谷氨酸对大鼠胶质细胞细胞周期、凋亡和坏死的影响

谷氨酸对大鼠胶质细胞细胞周期、凋亡和坏死的影响

一、谷氨酸对大鼠胶质细胞细胞周期和凋亡及坏死的影响(论文文献综述)

侯坤[1](2021)在《IL-4诱导小胶质细胞向M2表型极化对缺血性卒中的影响及其机制研究》文中进行了进一步梳理背景和目的:小胶质细胞是神经系统的固有免疫细胞,在中枢神经系统多种疾病的发生、发展中扮演重要的角色。缺血性脑卒中发生后,受缺血部位微环境的动态变化的影响,小胶质细胞的不同极化表型对损伤的发展和神经恢复的结局是至关重要的。既往研究发现,人为将M1型小胶质细胞诱导成M2型小胶质细胞细胞,可减轻短暂性脑缺血小鼠模型的梗死面积并促进神经功能恢复。小胶质细胞具有不同的极化表型,可以解释小胶质细胞在同一疾病的作用双重性。因此,有目的地抑制小胶质细胞由M2型向M1型极化,或诱导M1型向M2型极化,或降低M1型/M2型的比值,是缺血性脑卒中治疗的重要研究方向之一。IL-4主要由活化的T细胞产生,对体内多种免疫细胞均有调节作用。IL-4可刺激巨噬细胞和小胶质细胞向抗炎表型转化,从而抑制炎症进展,促进组织修复并发挥神经保护作用。目前,IL-4已应用于脑出血、脊髓损伤、癫痫、阿尔兹海默病等诸多神经系统疾病的研究。本研究拟探讨IL-4在缺血性卒中的治疗价值。方法:1、构建大鼠脑缺血再灌注(transient middle cerebral artery occlusion,t MCAO)模型,分假手术组与模型组,ELISA法检测大鼠外周血TNF-α、IFN-γ、IL-4、TGF-β和BDNF等炎症因子的变化。免疫荧光检测大鼠小胶质细胞极化表型的变化。取脑梗死患者和健康成人对照的外周血,ELISA法检测上述炎症因子的变化。2、构建大鼠t MCAO模型,分为假手术组、模型组、IL-4组和IL-4+AS1517499组。3天后予神经功能评分。取大鼠外周血,检测炎症因子的变化。处死大鼠,TTC染色,计算梗死容积,免疫荧光检测大鼠小胶质细胞极化表型的变化,TUNEL染色检测缺血半暗带组织细胞凋亡,Nissl染色法检测缺血半暗带神经元损伤。3、培养HAPI小胶质细胞系,对小胶质细胞进行氧糖剥夺(oxygen glucose deprivation,OGD)处理,分为Control组、OGD组、OGD+IL-4组、OGD+IL-4+AS1517499组。ELISA法检测细胞培养上清中IL-1β,IL-2,TNF-α,IL-10,TGF-β,BDNF等炎症因子的变化。Western blot检测JAK1、p-JAK1、STAT6、p-STAT6的表达水平变化。免疫荧光染色,检测小胶质细胞系极化表型的变化。荧光微球法检测小胶质细胞内吞能力的变化。4、培养RN-C神经元细胞系,建立神经元OGD培养模型,与预处理后的小胶质细胞共培养,分为Control组,OGD组,IL-4组,IL-4+AS1517499组。流式细胞术评价RN-C的凋亡,Western blot法检测RN-C凋亡相关蛋白的表达。5、统计分析使用Graph Pad Prism9进行。连续变量以“均数±标准差”表示,两组间比较采用t检验,多组间比较采用单因素方差分析。神经功能评估采用非参数检验(Kruskal-Wallis检验),多组间比较采取Dunn’s多组比较,P<0.05被认为有统计学差异。结果:1、与健康对照相比,脑梗塞患者血液中IFN-γ、TNF-α、TGF-β、BDNF和IL-4均明显升高,其中IFN-γ、TNF-α、BDNF和IL-4梗塞后第一天升高最明显,梗塞后第三天开始下降,但仍明显高于健康对照。2、相较于假手术组,模型组大鼠外周血中IFN-γ、TNF-α和IL-4水平均上升,BDNF水平下降。给予IL-4后,IL-1β,IL-2,TNF-α水平下降,IL-10,TGF-β,BDNF水平上升,联合给予IL-4+AS1517499后,IL-1β,IL-2,TNF-α水平上升,IL-10,TGF-β,BDNF水平下降。3、与假手术组相比,模型组缺血半暗带中小胶质细胞活化增加,M1与M2表型均增加。给予IL-4后,M2表型小胶质细胞增多,给予IL-4+AS1517499后,M2表型小胶质细胞减少。4、相较于假手术组,各模型组均出现明显的脑梗死。与模型组相比,给予IL-4后,脑梗死容积减少,联合给予IL-4+AS1517499后,大鼠脑脑梗死容积增加。5、TUNEL染色法检测细胞凋亡,与假手术组相比,模型组缺血半暗带细胞凋亡明显增加,给予IL-4后,细胞凋亡显着减少,同时给予IL-4+AS1517499后,凋亡明显增加。尼氏染色法检测神经元修复情况,与假手术组相比,模型组神经元尼氏小体明显减少,给予IL-4后尼氏小体增加,给予IL-4+AS1517499后,尼氏小体减少。6、与正常组和OGD组相比,给予IL-4后,CD163表达上升,给予IL-4+AS1517499后,CD163表达下降。与正常组和OGD组相比,给予IL-4后,小胶质细胞JAK1磷酸化(p-JAK1)增加、STAT6磷酸化(p-STAT6)增加,给予STAT6磷酸化抑制剂AS1517499后,JAK1磷酸化水平无变化,STAT6磷酸化水平降低。与正常组和OGD组相比,给予IL-4后,IL-1β、IL-2、TNF-α表达显着下调,IL-10,TGF-β,BDNF表达显着上升。给予IL-4+AS1517499后,IL-1β、IL-2、TNF-α表达上升,IL-10,TGF-β,BDNF表达下降。7、与正常组和OGD组相比,给予IL-4后,小胶质细胞的内吞能力增加,给予AS1517499后,内吞作用降低。8、在小胶质细胞、神经元共培养模型中,与Control组相比,OGD组RN-C细胞明显增加,IL-4处理后,RN-C的凋亡明显减少,凋亡蛋白表达下调,与IL-4组相比,IL-4+AS1517499组凋亡增加,凋亡蛋白表达增加。结论:1、IL-4通过JAK1-p JAK1-STAT6-p STAT6信号通路促进小胶质细胞向M2表型极化。2、IL-4促进小胶质细胞向M2表型极化,对缺血性卒中大鼠发挥神经保护作用。3、给予IL-4后,小胶质细胞分泌的促炎因子(IL-1β,IL-2,TNF-α)下降,抗炎因子(IL-10,TGF-β,BDNF)上升,吞噬能力增强,进而减少神经元凋亡与损伤,发挥神经保护作用。

王金秀[2](2021)在《虫草素对Aβ诱导老年痴呆模型动物的保护作用及机制》文中进行了进一步梳理阿尔茨海默病(Alzheimer’s disease,AD)又称老年性痴呆,是一种在老年人群中最为常见的神经系统退行性病变。以突触丢失、认知功能衰退、渐进性神经元死亡和胆碱能神经元的特异性减少为神经病理特征。以记忆障碍、行为障碍和情绪障碍为主要临床表现。AD患病人数随着社会人口老龄化程度不断加剧而逐年增多。据预测,到2050年,患痴呆症的人数将达到1.52亿,是目前患病人数的三倍多。目前,此病的药物治疗仍处于初级阶段,并不能延缓疾病的发展,给社会和家庭带来了沉重的负担。该病的防治工作已成为国内外医学界研究的热点。在众多病因学说中,β-淀粉样蛋白(amyloidβ,Aβ)聚积形成可溶性Aβ二聚体后,进而导致认知功能进行性退化,是目前公认的主要发病机制之一。有研究表明,Aβ寡聚体在脑内的过度沉积会产生神经毒性,引发突触功能障碍和神经元凋亡,使脑组织发生不可逆转的损伤,进而加快AD病理发展的进程。Aβ25-35被认为是Aβ发挥神经毒性作用的生物活性片段,海马区域注射Aβ25-35诱发的神经元损伤明显影响小鼠的空间学习记忆能力。D-半乳糖会引起代谢功能紊乱,提高体内自由基水平,使免疫器官老化,所引起的亚急性衰老与正常老化相似。采用海马区注射Aβ25-35诱发记忆障碍联合腹腔注射D-半乳糖加速动物衰老的方法建立一种复合型AD动物模型可以更真实地模拟阿尔茨海默病痴呆和衰老的症状。虫草素(cordycepin)分子结构为3’-脱氧腺苷,是从蛹虫草中分离出来的腺苷类似物,具有抗肿瘤、抗衰老、抗白血病等药理作用。已有研究证实,虫草素对中枢神经系统的生理及病理过程起到的调控作用。目前已有研究将虫草素用于治疗老年痴呆,但我们对虫草素改善AD学习记忆障碍的神经药理学机制仍知之甚少。基于此,本研究将采用电刺激Y迷宫实验、生化检测、HE组织染色观察方法并结合电生理技术从行为学角度,海马脑片层面及突触水平来探讨虫草素对AD大鼠学习记忆能力的改善作用及对突触传递的调控作用,为虫草素在神经退行性疾病方面的开发和应用提供实验依据。1、虫草素对Aβ联合D-半乳糖诱导老年痴呆动物模型的保护作用及机制:采用腹腔注射D-半乳糖联合海马区注射Aβ25-35方法造模。利用Y迷宫装置评估大鼠空间学习记忆能力,以及观察大鼠海马区域细胞形态和数目变化,测定大鼠海马区乙酰胆碱酯酶(acetylcholinesterase,Ach E)活性。结果表明,与正常对照组相比,AD模型组大鼠学习和记忆能力明显较低,ACh E活性升高,神经元损伤或丢失严重。相较于模型组,虫草素给药组大鼠记忆能力显着提高,ACh E活性明显降低,神经元数量增多,细胞形态得到改善。虫草素给药组各项指标均与正常对照组相近。提示,虫草素可明显改善Aβ25-35联合D-半乳糖诱导的AD模型大鼠的学习记忆能力,其潜在机制可能与增强胆碱能神经系统功能,减少海马神经元损伤有关。2、虫草素通过激活腺苷A1受体(adenosine A1 receptor,A1Rs)改善Aβ诱导的LTP损伤。采用离体场电位技术探究了虫草素对Aβ致长时程增强(long-term potential,LTP)损伤的影响。结果显示,虫草素可明显恢复Aβ所致的LTP缺失,而虫草素的这种保护作用会被选择性腺苷A1受体拮抗剂(8-cyclopentyl-1,3-dipropylxanthine,DPCPX)阻断,表明了虫草素改善Aβ诱导的LTP损伤是通过激活A1Rs来实现的。3、最后采用离体脑片膜片钳电生理技术进一步研究了虫草素对大鼠海马CA1区神经元突触传递电流的调控作用。以自发突触后电流(s PSCs),自发兴奋性突触后电流(s EPSCs),自发抑制性突触后电流(s IPSCs),微小兴奋性突触后电流(m EPSCs)和微小抑制性突触后电流(m IPSCs)等为测定指标。结果显示,虫草素(50mg/L)明显降低了CA1区锥体神经元s PSCs的发放,对s EPSCs,s IPSCs,m EPSCs,m IPSCs的发放也同样具有明显的降频作用;同时也证实了虫草素是通过与腺苷A1受体结合所产生的对突触传递的调控作用。

其布日[3](2021)在《额尔敦-乌日勒的活性成分分析及其对小胶质细胞基因调控作用的研究》文中提出脑卒中是我国第一大死亡原因,是全球仅次于缺血性心脏病的第二大死亡原因。因此,研发新型抗脑卒中药物意义重大。额尔敦-乌日勒(EW)是蒙医治疗神经系统疾病的经典方剂,具有良好的神经保护作用,对脑卒中引起的半身不遂等症状疗效显着,因而得到广泛的临床应用。然而,EW化学成分复杂,作用机制不明确。因此,必需明确EW的生物活性成分,并阐明其神经保护作用机制。本论文中分析了EW的部分有效成分,并发现了EW对大脑中动脉阻塞/再灌注损伤(MCAO/R)模型大鼠脑内小胶质细胞的基因调控作用、极化作用以及从抗神经性炎症作用。【研究目的】(1)验证EW对MCAO/R模型大鼠病变部位组织内基因表达的调控作用,并分析EW中所含有的神经活性化合物;(2)确定EW在脑卒中恢复期间通过调节小胶质细胞极化来抑制神经炎症的主要化合物;(3)确定EW的分级分离组分中的关键抗炎分子及作用机理以及对神经细胞保护及突触生长的影响;(4)EW中关键活性分子的协同作用对小胶质细胞基因表达谱的影响。【研究方法】(1)建立大鼠MCAO/R模型,连续给药两周。第15天,提取大鼠大脑皮质病变区组织的总RNA,并进行转录组测序(RNA-seq)分析。筛选未处理组、MCAO模型组和EW给药组之间显着差异表达的基因,并分析各个基因的功能以及在缺血性脑卒中恢复过程中的可能作用。(2)根据文献报道收集EW药材中与神经相关的生物活性化学分子信息,采用Chem Draw软件画出结构式并建立数据库,命名为“EW神经活性化合物数据库”;其次,采用五种不同溶剂提取EW可溶解组分,并使用UPLC-QTof-MS分析其活性化合物。(3)以调控小鼠小胶质细胞(BV2细胞株)M1表型表达的细胞因子Cxcl10为筛选标准,利用RT-q PCR法对EW的5种溶剂提物进行快速筛选,选出了调控作用最为显着的提取物,通过两次HPLC半制备分离,得到优化的生物活性小分子组,并利用UPLC-QTof-MS鉴定了其生物活性分子。(4)采用UPLC-QTof-MS鉴定EW的分离组分(命名为F4-6)的关键抗炎分子;利用蛋白免疫印迹分析了F4-6对脂多糖(LPS)刺激的BV2小胶质细胞NF-κB信号通路相关蛋白水平的影响;以及分析F4-6处理的小胶质细胞培养液对神经元(N2a细胞)的增值和突触生长的影响。(5)利用RNA-seq分析讨论EW所含关键活性分子土木香内酯(Ala)和去氢二异丁香酚(Deh)单分子以及混合物对LPS刺激的BV2小胶质细胞基因表达谱(Gene expression pattern profile)的影响,并采用RT-q PCR法对RNA-seq结果进行了验证。【研究结果】(1)Bederson评分显示,给药14天后,EW给药组MCAO/R模型大鼠的评分从治疗前的2.07降至治疗后的0.21(P<0.01),说明EW显着降低了神经系统损伤。与NT组相比,MCAO模型组大鼠大脑皮质区病变组织内有63个差异表达的基因;而与MCAO模型组相比,EW治疗后有186个差异表达的基因;其中生长因子(Igf1、Igf2和Tgfβ)和颗粒蛋白编码基因Grn等的表达在EW治疗后显着上调(P<0.05);同时也检测到小胶质细胞标记物的表达大幅增强,以及补成分和分泌蛋白酶的表达。(2)五种不同溶剂提取的EW组分的UPLC-QTof-MS分析发现,在我们建库的11种蒙药的32个小分子化合物中,除决明子外其他10种蒙药(红花、肉豆蔻、甘草、草果、川楝子、栀子、土木香、木香、荜茇和黑种草等)中已报道的16个神经活性相关小分子化合物分别出现在五种溶剂提取物中。(3)快速筛选结果表明,EW石油醚提取物(命名为EW-5)对Cxcl10基因表达的抑制作用最强(P<0.05)。采用HPLC半制备法,对EW进行2次分级分离后最终得到12个组分。其中,组分F4-6对促炎细胞因子(Cxcl10、Tnfα、Il1β和Nos2)表达的抑制作用最显着(P<0.05)。通过UPLC-QTof-MS对F4-6进行了分析,共鉴定出20种化合物,其中包括木香烃内酯、肉豆蔻醚、土木香内酯和亚麻酸;这些小分子在LPS刺激的BV2细胞和小鼠原代小胶质细胞中,显着下调关键促炎细胞因子的表达。(4)土木香内酯(Ala)和去氢二异丁香酚(Deh)是F4-6的关键抗炎活性分子。F4-6、Ala和Deh均下调LPS刺激的小胶质细胞中Ccl2、Cox2和Il6等促炎基因的表达;同时上调Hmox1、Tgfβ、Igf1和Creb1等抗炎基因的表达。此外,F4-6处理的小胶质细胞条件培养液能显着促进N2a细胞的增殖,并可能通过上调Nefh和Dlg4来促进突起的生长。从机理上讲,F4-6显着降低了NF-κB p65蛋白的表达,同时抑制了p65的核转位,导致NF-κB启动的促炎基因转录受到抑制。(5)RNA-seq发现,Ala、Deh和Mix均下调促炎基因和上调抗氧化基因。Mix组的作用比Ala组和Deh组的作用更显着(P<0.05),其作用不仅仅是简单的Ala和Deh作用的加和。【研究结论】综上所示,本论文首次利用RNA-seq技术,系统的分析了蒙药EW对MCAO/R模型大鼠脑卒中病变区周围细胞的基因表达的调控作用,发现EW显着改善缺血性脑卒中后神经损伤的恢复,并促使小胶质细胞从M1表型极化至M2表型;同时利用UPLC-QTof-MS系统的分析了EW中神经炎症及神经保护等相关的生物活性化合物,发现EW中多种活性化合物组分的协同作用可能是平衡小胶质细胞极化和缺血性脑卒中后的恢复,也验证了EW治疗白脉病(神经系统疾病)的传统功效,为进一步研究EW甚至其他传统药物的治疗机理提供了重要的证据。

全威[4](2021)在《马铃薯制品中三类美拉德反应危害物的形成及其对健康的影响》文中认为热加工食品中美拉德反应危害物(Maillard reaction harmful products,MRHPs)是食品安全领域的热点问题。马铃薯制品是一类消费量大、消费受众广的典型MRHPs高暴露食品。近年来,马铃薯制品对健康的影响受到诸多关注,但仅从反式脂肪酸、血糖指数和血糖负荷值等因素无法充分解释不同加工方式的马铃薯制品之间对健康影响的差异。考虑到不同方式加工的马铃薯制品中MRHPs含量有显着差异,因此有理由怀疑其也是马铃薯制品影响健康的关键因素。但现有研究聚焦于马铃薯制品中的丙烯酰胺,而忽视了其中还可能存在的其它MRHPs。多种MRHPs的形成受到哪些因素的影响,同时被机体摄入后对健康产生怎样的影响。因此,明确马铃薯制品中多种MRHPs的生成影响因素及其对健康的影响,对于马铃薯制品健康性问题至关重要。基于此,本论文以马铃薯制品为研究对象,分析主要MRHPs的组成和含量,在此基础上通过循证医学和动物实验的手段探究马铃薯制品及其MRHPs对生物体健康的影响。本研究首先对83种商品化马铃薯制品中主要MRHPs的种类及含量水平进行了调查,并以油炸、焙烤、挤压膨化和蒸煮四类加工方式进行了分类统计。在此基础上,以MRHPs含量较高的油炸和焙烤两种加工形式为重点,对中国主要马铃薯产区的九种马铃薯中可能影响上述三类MRHPs生成的主要组成成分进行了测定,并测定了三类MRHPs的生成情况,最后基于主成分分析和典型相关性分析相结合的多元统计分析方法对所得到的数据集进行综合分析初步探讨了热加工过程中马铃薯组分对多种MRHPs生成的影响。结果显示,商品化马铃薯制品中丙烯酰胺的含量为0.06μg/g~2.60μg/g;两种晚期糖基化产物(CML和CEL)的含量水平分别为1.05μg/g~11.24μg/g和1.78μg/g~14.4μg/g,要略低于热加工肉制品中CML和CEL的含量;而杂环胺主要是两种β-咔啉类杂环胺:Harmane和Norharmane,其含量略低于咖啡制品中β-咔啉类杂环胺的水平(10μg/kg~40μg/kg)。马铃薯原料组分对于三类MRHPs生成有显着影响,赖氨酸、谷氨酸、3-CQA和5-CQA与丙烯酰胺和Harmane的形成呈典型负相关性;天冬氨酸、α-卡茄碱和α-茄碱则分别与丙烯酰胺和Harmane的形成呈典型正相关性。为明确马铃薯制品特别是其中MRHPs与人类慢性疾病风险的关联,论文采用meta分析方法,将目前不同热加工方式马铃薯制品与慢性疾病的前瞻性队列研究的风险比结果通过随机效应模型进行合并,并结合亚组分析和剂量效应分析探究长期摄入不同热加工方式马铃薯制品对人体健康的影响,结果显示不同热加工方式马铃薯制品与慢性疾病风险的关联呈现显着差异。与蒸煮马铃薯相比,长期摄入油炸和焙烤马铃薯与糖尿病、高血压和结肠癌的患病风险显着相关。剂量效应分析结果具体指出,每天增加100 g马铃薯的摄入会将糖尿病的发生风险提升5%,每天增加100 g油炸马铃薯的摄入会将糖尿病的发生风险提升10%。而蒸煮马铃薯制品则与慢性疾病风险不存在显着的关联。基于马铃薯制品中三类MRHPs含量数据和动物实验剂量数据,详细研究了丙烯酰胺(2 mg/kg体重/天)、CML(2 mg/kg体重/天)和Harmane(1 mg/kg体重/天)单独和混合摄入对Sprague-Dawley(SD)大鼠健康的影响。血清生化、组织病理学以及代谢组学结果发现,Harmane没有对SD大鼠的健康造成显着不良影响。丙烯酰胺和CML分别造成了SD大鼠胰岛素敏感性降低和胰腺损伤并导致空腹血糖上升,还会通过氧化应激导致肝脏、腓肠肌和神经纤维发生不同程度的病理改变和功能异常。由于Harmane具有抗氧化和抗糖尿病活性,三类MRHPs混合摄入时对氧化应激、血糖代谢以及胰腺和神经损伤的影响有所减弱。但MRHPs混合摄入时又会引发肾脏损伤和功能异常以及肿瘤风险增加等新的健康问题产生。这主要与Harmane的辅助致癌性,以及三类MRHPs均对精氨酸生物合成通路造成影响,导致MRHPs混合摄入时富马酸代谢和关联的TCA循环异常有关。上述结果表明多种MRHPs混合摄入时对机体健康的影响和机制并不能简单的根据MRHPs单独作用时的结果进行预测。考虑到上一部分研究发现马铃薯制品中三类MRHPs对SD大鼠血糖水平和脏器组织造成不良影响,本文进一步探究了三类MRHPs单独和混合摄入对糖尿病GotoKakizaki(GK)大鼠健康的影响。从血清生化、氧化炎症应激、胰岛细胞凋亡及代谢通路等角度初步探究了MRHPs对GK大鼠糖尿病进展的影响及其机制。结果显示,丙烯酰胺以及CML介导GK大鼠氧化炎症应激、造成胰腺病理损伤和胰岛β细胞分泌功能受损、糖代谢及能量代谢通路紊乱,最终导致GK大鼠糖尿病进展恶化。Harmane则没有对GK大鼠糖尿病进展造成显着影响,并且Harmane具有抗氧化和抗糖尿病作用,上调了糖代谢通路相关代谢物的表达。因此,MRHPs混合摄入对GK大鼠氧化应激水平、胰腺功能以及糖代谢通路的影响有所降低,但考虑MRHPs混合摄入造成了胰腺病理损伤,最终还是会对GK鼠糖尿病进展造成不良影响。其次,从血清生化和代谢组学分析了MRHPs对GK大鼠糖尿病并发症的影响发现,MRHPs与GK大鼠脑和神经系统、肝肾等糖尿病并发症的发生密切相关,MRHPs混合摄入还与肿瘤风险增加有关。最后,基于上一部分研究发现三类MRHPs影响GK大鼠脑部并发症的结果,本文以认知和记忆功能障碍这一重要的糖尿病脑部并发症为例,从氧化炎症应激关联的神经胶质细胞激活、神经元损伤和神经细胞凋亡以及Aβ沉积、糖代谢和胰岛素信号传导等多个途径具体分析和比较了三类MRHPs单独和混合摄入对GK大鼠认知和记忆功能及其相关机制的影响。研究发现丙烯酰胺和CML会介导GK大鼠体内氧化应激,激活脑部神经胶质细胞并引起炎症应激,造成Aβ在脑部积累增加和脑部正常的葡萄糖转运功能受损,从而导致GK大鼠的认知和记忆功能受损。此外,丙烯酰胺还会造成脑部神经突触功能蛋白下调、细胞凋亡蛋白上调,对GK大鼠认知和记忆功能产生严重不良影响。Harmane没有对GK大鼠认知和记忆功能造成显着不良影响,并且三类MRHPs混合摄入对GK大鼠认知和记忆功能的影响较单独摄入时显着减弱,这主要与Harmane发挥抗氧化活性降低了其它MRHPs混合摄入时对氧化和炎症应激水平和神经突触功能和细胞凋亡的影响有关。因此,马铃薯制品中多种MRHPs对GK大鼠脑部认知和记忆功能的不良影响的机制主要与脑部血糖代谢异常和Aβ沉积有关。

汪戎锦[5](2021)在《基于代谢组学的刺五加叶治疗缺血性脑卒中作用机制研究》文中进行了进一步梳理缺血性脑卒中作为全球性的公共健康问题,危害着全世界人类的健康,并以其高发病率和高死亡率,引起了科学家们的广泛关注。缺血性脑卒中发生的主要原因为凝结的血栓或栓子阻塞在脑动脉中使大脑供血受限从而引起氧气和营养的供应不足。刺五加叶作为一种可再生资源,因其化学成分以及药效作用与刺五加根相似,被广泛用于脑血管疾病、缺血性心脏病等疾病的治疗。本实验室在前期的研究工作中筛选并制备了刺五加叶的主要活性组分,并采用药效学研究证明了刺五加叶具有抗氧化、抑制细胞损伤以及缺血性脑卒中的保护作用。然而,刺五加叶的化学成分复杂,在体内作用于多个靶点,致使其治疗缺血性脑卒中的整体作用机制研究尚不够深入,目前缺乏系统研究,在一定程度上限制了刺五加叶的开发及应用。代谢组学作为一种系统生物学研究方法,能够对内源性小分子的整体变化进行系统分析,逐渐成为揭示病机复杂疾病的发病机理,和多成分、多靶点药物作用机制的一种强有力工具。因此,本研究围绕脂质异常、神经损伤以及菌群失调等缺血性脑卒中的关键病理环节,采用基于质谱技术的多样本(血清、粪便、尿液、脑组织)代谢组学的研究方法,对刺五加叶治疗缺血性脑卒中的作用机制进行了深入研究,并阐明其科学内涵。主要研究内容包括以下几个方面:1.刺五加叶治疗缺血性脑卒中的血清脂质组学及其神经保护作用研究首先对刺五加叶的主要活性组分进行基于UPLC方法的成分分析。结果表明,刺五加叶的主要活性组分含有有机酸类化合物、黄酮类化合物和糖苷。其次,建立大鼠缺血性脑卒中疾病模型,并给予刺五加叶治疗四周。由于脂质异常、神经损伤、氧化应激和炎症反应是缺血性脑卒中发作的四个主要方面,本文围绕以上四个方面展开了研究。首先,采用基于UPLC-Q-TOF/MS的脂质组学方法,研究缺血性脑卒中发生后大鼠血清脂质的代谢紊乱,以及刺五加叶的调节作用。利用UPLC-Q-TOF/MS采集刺五加叶给药四周后缺血性脑卒中大鼠血清样本的脂质代谢轮廓,结合Progenesis QI软件进行包括多元统计学分析、潜在脂质标记物鉴定以及通路分析在内的数据处理。共鉴定出27种脂质组学生物标记物,包括PC,PE,SM和TG类脂质,分布在各种脂质代谢途径中,包括甘油磷脂、亚油酸、α-亚麻酸、甘油脂、鞘脂和花生四烯酸代谢途径。结果表明,刺五加叶能够调节缺血性脑卒中发生发展过程中出现的脂质代谢紊乱。其次,针对缺血性脑卒中发生时的神经损伤过程,采用UPLC-TQ/MS对大鼠脑组织及血清中10种神经递质进行了定量研究。结果表明,缺血性脑卒中能够导致谷氨酸(Glu),天冬氨酸(Asp)等兴奋性氨基酸的过度释放,产生神经毒性,还能够增加γ-氨基丁酸(GABA)、五羟色胺(5-HT)、去甲肾上腺素(NE)、肾上腺素(E)、多巴胺(DA)以及牛磺酸(Tau)的含量,并降低抑制性神经递质甘氨酸(Gly)以及神经炎症调节剂乙酰胆碱(Ach)的含量。而给予刺五加叶治疗后,能够使以上神经递质在脑组织和血清中的水平均向正常水平调节,说明其能够通过调节缺血性脑卒中大鼠的神经递质含量发挥保护中枢神经系统的作用。最后,通过MDA和SOD的定量分析,检测缺血性脑卒中后氧化应激程度,通过TNF-α,IL-6和IL-10的定量分析,检测炎症反应程度。结果表明,刺五加叶可以在一定程度上减轻机体的氧化应激和炎症损伤,从而减轻缺血性脑卒中对机体的损伤。从调节脂质代谢紊乱、神经损伤、氧化应激反应以及炎症反应等方面揭示了刺五加叶治疗缺血性脑卒中的作用机制。2.刺五加叶治疗缺血性脑卒中粪便代谢组学研究及其对微生物-肠-脑轴的影响微生物-肠-脑轴双向通讯系统与缺血性脑卒中的发生及预后相互关联,这种关联作用近年来逐渐引起科学家的广泛关注。本文采用基于UPLC-Q-TOF/MS的粪便非靶向代谢组学方法,结合基于UPLC-TQ/MS的粪便胆汁酸靶向代谢组学方法,以及16S r RNA粪便菌群测序,研究了刺五加叶对缺血性脑卒中模型大鼠微生物-肠-脑轴的平衡作用。首先,利用UPLC-Q-TOF/MS采集刺五加叶治疗四周后缺血性脑卒中大鼠粪便样本的代谢轮廓,结合多元统计学分析筛选具有显着差异的潜在生物标记物,并进行通路分析,共鉴定出40个潜在的差异性生物标记物,主要涉及花生四烯酸代谢通路、不饱和脂肪酸的生物合成途径、胆汁酸的生物合成途径、鞘脂代谢通路等。以上生物标记物的含量在缺血性脑卒中发生后具有显着的变化,而刺五加叶可以调节其含量以恢复正常状态。其次,基于UPLC-TQ/MS的靶向代谢组学方法对13种胆汁酸进行了定量分析。结果显示,缺血性脑卒中发生时,大鼠粪便胆汁酸发生代谢紊乱,刺五加叶能够调节多种胆汁酸的含量,使其更加趋近于正常水平。最后,16S r RNA菌群测序结果表明,缺血性脑卒中可导致大鼠肠道内病原体富集,益生菌水平大幅降低,而刺五加叶能够使缺血性脑卒中大鼠体内病原体含量降低,同时增加益生菌水平。上述结果揭示了刺五加叶具有对缺血性脑卒中大鼠微生物-肠-脑轴的调节作用,为阐明刺五加叶治疗缺血性脑卒中的作用机制研究奠定基础。3.刺五加叶通过对益生菌的调节作用治疗缺血性脑卒中的机制验证选择能够被刺五加叶调节的益生菌给药缺血性脑卒中大鼠,验证给药刺五加叶后,益生菌水平的升高是发挥其治疗效果的重要因素之一。首先,培养罗伊氏乳酸杆菌以及丁酸梭菌并制备菌液,分别给予缺血性脑卒中大鼠以上两种菌液。经四周给药后,检测大鼠粪便的菌群组成。结果表明,与模型组比较,益生菌给药后的缺血性脑卒中大鼠粪便中菌群组成与含量产生较大变化,并与对照组大鼠粪便菌群组成更为相似。其次,采用基于UPLC-TQ/MS的定量方法检测缺血性脑卒中大鼠经益生菌给药后,脑组织中神经递质的含量变化。结果表明,给予两种益生菌后,具有神经毒性的神经递质含量降低,而具有神经调节作用的神经递质含量显着升高,更加趋近于健康大鼠。最后,通过ELISA法检测大鼠血清和脑组织中多种炎症因子IL-1β、IL-6、IL-10、TNF-α的含量和脑组织中MDA、SOD、COX-2、MAO的含量。结果表明,当缺血性脑卒中发生时,大鼠体内IL-1β、IL-6、TNF-α、MDA、COX-2和MAO含量显着升高,而IL-10和SOD含量显着降低。给予两种益生菌后,缺血性脑卒中大鼠体内以上指标的含量均能够被调节至正常水平,推测两种益生菌均能够通过减轻炎症及氧化应激损伤,对机体产生一定的保护作用。本研究验证了刺五加叶能够通过影响微生物-肠-脑轴的代谢,增加体内益生菌丰度,调节卒中引起的神经损伤、炎症反应以及氧化应激损伤,从而起到对机体的保护作用。4.刺五加叶治疗缺血性脑卒中的尿液代谢组学研究尿液样本能够准确、灵敏地反映机体的代谢变化,为代谢组学研究中最重要的生物样本。采用基于UPLC-Q-TOF/MS的非靶向尿液代谢组学方法对刺五加叶治疗缺血性脑卒中的作用机制进行研究并验证。采用UPLC-Q-TOF/MS采集大鼠尿液样本的代谢轮廓,结合Progenesis QI软件进行数据处理,筛选并鉴定潜在生物标记物,构建基因-酶-生物标记物代谢网络。本研究共筛选出42种在缺血性脑卒中疾病进程中具有显着变化的潜在生物标记物,经刺五加叶治疗后,38种生物标记物的含量变化能够被显着调节,涉及体内牛磺酸和次牛磺酸代谢通路、花生四烯酸代谢通路、半胱氨酸和蛋氨酸代谢通路、类固醇激素生物合成途径、色氨酸代谢通路、酪氨酸代谢通路和嘧啶代谢途径等多种代谢途径的调节作用。最后,选择3种与以上通路相关的关键酶COX-2,NOS和MAO作为刺五加叶治疗的靶点酶,进行定量验证。结果表明,模型大鼠经刺五加叶治疗后血清和脑组织中三种酶的含量与假手术组大鼠相似,证明了刺五加叶可以通过调节以上三种酶的含量发挥刺五加叶治疗缺血性脑卒中的作用。本实验结果有助于进一步了解缺血性脑卒中的发病机制,并为刺五加叶的潜在治疗机制研究提供科学依据。5.基于高效同位素标记衍生化的刺五加叶治疗缺血性脑卒中尿液代谢组学研究高效化学同位素标记(CIL)衍生化结合液质联用(LC-MS)的代谢组学方法是使用靶向特定官能团的试剂标记生物样本,使所有具有相同官能团的代谢物生成相应的衍生代谢物,在提高总体代谢组学覆盖率的同时,将同位素引入标记代谢物中,使重同位素试剂衍生的代谢产物作为轻同位素试剂衍生代谢物产物的内标,从而提高代谢产物的定性及定量精度。本研究采用基于CIL LC-MS的刺五加叶治疗大鼠缺血性脑卒中的尿液代谢组学方法,分别对胺/酚类亚代谢组和羧酸类亚代谢组进行分析研究。结果表明,刺五加叶能够通过体内多种通路调节缺血性脑卒中发生后的代谢紊乱,与传统尿液代谢组学研究结果相比,CIL LC-MS法筛选出了更多潜在生物标记物,并覆盖更多体内代谢通路,得到了覆盖率更广、定量更精准的代谢组学结果。同时,在每条通路中匹配到更多的具有显着差异的代谢产物,明确通路中上游化合物及下游产物的显着变化及机制,使针对各通路的研究更加全面。最终,从神经保护、调节能量代谢、抑制炎症损伤、拮抗氧化应激的角度对刺五加叶治疗缺血性脑卒中的作用机制进行系统阐述。进而为刺五加叶治疗缺血性脑卒中的作用机制提供更加全面的科学依据。综上所述,本论文采用基于大鼠血清、粪便、尿液以及脑组织多种生物样本的代谢组学方法,进行刺五加叶治疗大鼠缺血性脑卒中作用机制的系统研究。将尿液和粪便的非靶向代谢组学研究,与血清脂质、脑组织神经递质以及粪便胆汁酸的靶向代谢组学研究相结合,明确刺五加叶对缺血性脑卒中大鼠体内多种代谢通路的调节作用,对脂质紊乱的调节作用,以及对神经系统的保护作用。其次,通过对大鼠粪便的菌群分析和验证实验,阐述刺五加叶可能通过调节微生物-肠-脑轴双向通讯系统发挥缺血性脑卒中的治疗作用,推测刺五加叶增加肠道益生菌含量是其发挥缺血性脑卒中治疗作用的关键因素之一。并采用基于高效同位素标记结合LC-MS的代谢组学方法,对体内胺/酚类亚代谢组及羧酸类亚代谢组进行全面分析,从神经保护、调节能量代谢、抑制炎症损伤、拮抗氧化应激的角度系统阐述刺五加叶治疗缺血性脑卒中的作用机制。本研究结合先进的分析技术手段,探讨中药的作用机制,为阐明刺五加叶治疗缺血性脑卒中的作用机制提供理论依据,同时也为中药作用机制的系统研究提供了新的方法路线。

马岱朝[6](2021)在《丹参多酚酸通过小胶质细胞P2X7/NLRP3/GSDMD通路减轻实验性脑缺血再灌注损伤研究》文中认为目的:大量研究表明丹参多酚酸可以改善缺血性脑卒中的预后结局,并通过多种药理作用及机制发挥神经保护作用,但其潜在的作用机制有待进一步阐明。小胶质细胞参与脑梗死后的炎症反应,而小胶质细胞中由NLRP3炎症小体及其上游的P2X7受体和下游的GSDMD分子构成的P2X7/NLRP3/GSDMD通路介导脑梗死后的炎症级联反应。本研究建立大鼠大脑中动脉闭塞/再通(MCAO/R)模型和大鼠原代神经元与原代小胶质细胞共培养缺氧缺糖/复氧复糖(OGD/R)模型,通过观察丹参多酚酸的注射剂型注射用丹参多酚酸盐(SAFI)对MCAO/R模型神经功能评分、梗死体积、神经元凋亡、炎症因子表达及OGD/R模型中神经元细胞活力与凋亡的影响,并且观察SAFI对MCAO/R模型脑皮质及OGD/R模型中小胶质细胞中P2X7/NLRP3/GSDMD通路中相关分子的表达的影响,旨在探讨SAFI通过抑制小胶质细胞P2X7/NLRP3/GSDMD通路对实验性脑缺血再灌注(I/R)损伤的神经保护作用及分子机制。材料与方法:1.SAFI对MCAO/R模型大鼠神经保护作用(1)将58只SD大鼠随机分为2部分,第一部分大鼠随机分2组:I/R组(MCAO/R+生理盐水),I/R+SAFI组(MCAO/R+SAFI),于术后第1至第7天每天进行一次神经功能评分,于术后第7天获取脑组织测量梗死体积。实验第二部分动物随机分为四组:Control组(假手术+生理盐水),SAFI组(假手术+SAFI),I/R组(MCAO/R+生理盐水),I/R+SAFI组(MCAO/R+SAFI),该部分大鼠3天后取脑用于组织学(HE、免疫组化、TUNEL、荧光染色)检测及RT-PCR及western blot检测。(2)使用尼龙线由颈外动脉插入至大脑中动脉(MCA)阻断MCA血供引起供血区域缺血损伤,封堵120分钟后拔出尼龙线恢复血流,建立MCAO/R模型。通过观察MCAO/R模型大鼠梗死体积、神经功能评分、HE染色组织病理,免疫组织化学检测炎症因子表达、TUNEL检测神经细胞凋亡情况,评估SAFI对大鼠缺血再灌注损伤的神经保护作用。2.SAFI对经OGD/R处理的神经元细胞活力与凋亡影响的研究(1)取新生SD乳鼠分离提取原代神经元细胞及原代小胶质细胞,免疫荧光检测神经元标记物MAP2的表达鉴定神经元,免疫荧光检测小胶质细胞标记物CD11-b的表达鉴定小胶质细胞。MTT法检测不同浓度SAFI对OGD处理的大鼠原代神经元细胞和原代小胶质细胞的细胞活性筛选SAFI最佳药物浓度。(2)根据细胞类型,分为单纯神经元培养组与小胶质细胞+神经元共培养组。单纯神经元培养组分为三个亚组:Neuron组(神经元正常条件下培养),Neuron+OGD/R组(神经元行OGD/R处理),Neuron+OGD/R+SAFI组(神经元行OGD/R及SAFI处理。处理方法:在Neuron+OGD/R+SAFI组,将原代神经元接种于培养板中,给予SAFI预处理24 h,将培养换至无葡萄糖的DMEM于95%N2+5%CO2环境中(培养液含同浓度SAFI)培养3h,接着将细胞于正常培养条件下继续培养24h后收集细胞用于检测;Neuron+OGD/R组不加SAFI,培养条件同前;Neuron组不加SAFI于正常培养条件下培养。小胶质细胞+神经元共培养组分为三个亚组:Neuron+Microglia组(神经元与小胶质细胞正常条件下共培养),Neuron+Microglia+OGD/R组(神经元与小胶质细胞共培养并行OGD/R处理),Neuron+Microglia+OGD/R+SAFI组(神经元与小胶质细胞共培养并行OGD/R及SAFI处理)。处理方法:在Neuron+Microglia+OGD/R+SAFI组,将原代小胶质细胞和原代神经元细胞利用Transwell共培养体系培养。神经元细胞接种于下室,小胶质细胞接种于上室,用SAFI于正常培养条件下预处理24 h后,将细胞换至无葡萄糖的DMEM(含相同浓度的SAFI)于95%N2及5%CO2环境中,37℃培养3 h构建OGD模型,于正常培养条件下继续培养24 h后,收集神经元细胞及培养基用于检测;Neuron+Microglia+OGD/R组不加SAFI,培养条件同前;Neuron+Microglia组不加SAFI于正常培养条件下培养。(3)经OGD/R处理细胞,通过检测培养基中LDH水平反映细胞受损程度,通过CCK-8法检测各组神经元细胞的活力,采用流式细胞术检测神经元细胞的凋亡等方法,来观察SAFI对单纯培养及与小胶质细胞共培养的神经元的保护作用。3.SAFI对MCAO/R模型及OGD/R模型小胶质细胞NLRP3炎症小体激活与焦亡相关蛋白GSDMD影响的研究(1)动物造模及分组同上。将共培养细胞分为4组:分别为Control组(神经元与小胶质细胞正常条件下共培养),SAFI组(神经元与小胶质细胞正常条件下共培养并加入SAFI),OGD/R组(神经元与小胶质细胞共培养并行OGD/R处理),OGD/R+SAFI组(神经元与小胶质细胞共培养并行OGD/R处理且加入SAFI干预)。(2)将体外培养的原代小胶质细胞和体外培养的大鼠原代神经元细胞利用Transwell共培养体系培养,神经元细胞种于下室,小胶质细胞接种于上室,用50ug/ml浓度的SAFI于正常培养条件下预处理24 h,后将细胞换至无葡萄糖的DMEM(含相同浓度的SAFI)于95%N2+5%CO2环境中,37℃培养3 h构建OGD模型,于正常培养条件下继续培养24 h后收集神小胶质细胞。OGD/R组不加SAFI,培养条件同前。SAFI组加SAFI于正常培养条件下培养。Control组不加SAFI于正常培养条件下培养。(3)构建MCAO/R模型及小胶质细胞OGD/R模型后,采用免疫荧光法观察皮质小胶质细胞NLRP3的表达情况,采用western blot法检测脑组织中及培养的小胶质细胞中NLRP3炎症小体激活与焦亡相关蛋白GSDMD表达及裂解的水平,采用RT-PCR检测脑组织中及培养的小胶质细胞中NLRP3炎症小体相关的m RNA表达和GSDMD的m RNA表达水平。(4)采用尼日利亚菌素和尿酸单钠作NLRP3炎症小体激活剂,在培养小胶质细胞后加入脂多糖激惹细胞,用PBS洗脱脂多糖后以SAFI处理细胞,然后以尼日利亚菌素或尿酸单钠在无血清培养基中处理细胞,然后裂解细胞后进行western blot检测。4.SAFI对MCAO/R模型及OGD/R模型NLRP3炎症小体激活上游的膜离子通道P2X7表达的影响及SAFI组分与P2X7的分子对接(1)MCAO/R造模及OGD/R模型制备及分组同上。(2)采用RT-PCR、Western blot及免疫荧光方法,观察SAFI对大鼠MCAO/R脑皮质及OGD/R模型中与神经元共培养的小胶质细胞中P2X7表达的影响。(3)采用计算机分子对接方法,从RCSB数据库下载大鼠P2X7的X-ray晶体三维结构文件,通过文献报道获取该蛋白与ATP通过氢键与离子相互作用结合口袋的主要氨基酸残基,运用Discovery Studio4.2软件对蛋白质删除配体处理,利用Auto Dock 4.2.6软件进行加氢、计算电荷、转化格式等处理。从TCMSP数据库、ZINC数据库、Pub Chem数据库获取SAFI主要成分的分子结构。利用Auto Dock软件进行半柔性对接。采用Discovery Studio4.2软件对对接结果进行可视化分析,观察SAFI的主要成分丹酚酸B、丹酚酸D、丹酚酸Y、紫草酸及迷迭香酸与P2X7结合的能力。结果:1.SAFI可改善大鼠脑MCAO/R模型神经功能缺损并减小脑梗死体积,并可减轻MCAO/R模型脑组织病理损伤。2.SAFI可减少大鼠脑MCAO/R模型脑皮质炎症因子ICAM-1、IL-1β、IL-18、TNF-α的表达水平,并减少MCAO/R模型皮质神经细胞凋亡。3.SAFI对OGD/R处理的单纯培养及与小胶质细胞共培养神经元的细胞损伤有减轻作用,并可改善细胞活力,且能降低凋亡率。4.在共培养条件下经OGD/R处理,小胶质细胞对神经元有细胞毒性作用,而SAFI可能具有减轻小胶质细胞对神经元的细胞毒性的作用。5.SAFI可以降低大鼠脑I/R损伤后小胶质细胞中NLRP3表达,并可抑制脑I/R损伤后IL-1β及IL-18等促炎性因子的表达。6.SAFI可抑制脑I/R损伤后皮质及与神经元共培养并经OGD/R处理的小胶质细胞中NLRP3炎症小体的激活。7.SAFI可以抑制脑I/R损伤后脑皮质及与神经元共培养并经OGD/R处理的小胶质细胞的焦亡相关蛋白GSDMD的裂解。8.SAFI可以降低脑I/R损伤后皮质及OGD/R处理后的小胶质细胞中NLRP3、ASC、caspase1、IL-1βm RNA的表达水平。9.SAFI可降低MCAO/R模型大鼠脑皮质Iba1及P2X7双标阳性的小胶质细胞的数量,并可降低MCAO/R模型大鼠脑皮质及与神经元共培养并经OGD/R处理的小胶质细胞中P2X7蛋白及m RNA表达。10.SAFI中的丹酚酸D、丹酚酸Y、紫草酸等活性成分可能与P2X7受体具有较好的结合能力。结论:1.抑制炎症反应及减轻神经元凋亡是SAFI治疗缺血性脑卒中发挥神经保护作用的部分药理学基础,抑制炎症反应可能是体现SAFI活血化瘀功效的一个方面。2.SAFI对OGD/R处理的神经元具有直接的和可能通过拮抗小胶质细胞对神经细胞毒性而产生间接的神经保护作用。3.SAFI中的丹酚酸D、丹酚酸Y、紫草酸等活性成分可能有拮抗P2X7受体激活的作用。4.SFAI对脑缺血再灌注损伤具有神经保护作用,部分原因可能是SAFI可抑制小胶质细胞NLRP3炎症小体激活及细胞焦亡。5.SAFI可能通过小胶质细胞P2X7/NLRP3/GSDMD通路抑制NLRP3炎症的激活及细胞焦亡,缓解下游炎症级联瀑布扩大,从而对实验性脑缺血再灌注损伤发挥神经保护作用。

赫广玉[7](2021)在《乳酸介导的神经元-星形胶质细胞代谢偶联及HCAR1-cAMP-PKA通路在低血糖引起神经元功能异常中的作用》文中研究说明研究目的:低血糖对神经系统的损伤一直是业内研究的热点。但是随着研究的深入,发现低血糖对神经元及认知功能的影响不尽相同。因此,进一步探讨低血糖对神经系统的影响及相关机制尤为重要。大脑能量消耗占人体总能量的20%,葡萄糖是大脑能量代谢最重要的底物,低血糖会引起大脑能量代谢变化。近年来,研究发现星形胶质细胞来源的乳酸可以作为能量底物为神经元供能;乳酸还可以作为信号分子激活神经元细胞膜表面的乳酸受体而影响其功能。基于以上研究背景,本研究拟通过构建神经元-星形胶质细胞共培养体系低血糖模型,观察低血糖对神经元形态及功能的动态影响,探讨乳酸介导的神经元-星形胶质细胞代谢偶联及神经元受体后级联信号通路在低血糖引起神经元功能异常中的作用,并下调神经元乳酸转运体及受体表达,进一步验证乳酸在低血糖引起神经元功能异常中的作用。研究方法:(1)复制本课题组成熟的神经元-星形胶质细胞共培养体系模型,给予更换无糖培养基构建低血糖模型,采用噻唑蓝(MTT)方法检测神经元细胞活性,评估低血糖模型的可靠性;(2)利用苏木素-伊红(HE)染色、尼氏染色等方法观察低血糖对共培养神经元形态学影响;利用免疫荧光及流式细胞术评估细胞凋亡及细胞周期;应用蛋白免疫印记(western blot)方法评估神经元细胞周期蛋白cyclin A及突触可塑性蛋白的表达;(3)应用试剂盒检测星形胶质细胞中谷氨酸及糖原水平、糖原磷酸化酶活性,星形胶质细胞及神经元中糖酵解关键酶的活性;应用试剂盒检测星形胶质细胞、培养基及神经元内能量代谢底物乳酸及丙酮酸含量的变化;应用western blot方法检测谷氨酸转运体、单羧酸转运体及糖酵解关键酶的蛋白表达;采用小干扰RNA(small interfering RNA,si RNA)技术下调单羧酸转运体(monocarboxylate transporter,MCT)MCT2表达,通过HE染色观察神经元形态变化,采用试剂盒检测神经元及培养基中乳酸含量变化、神经元中ATP水平变化,应用MTT方法检测细胞活性;(4)应用western blot方法检测神经元乳酸受体—羟基羧酸受体1(hydroxycarboxylic acid receptor 1,HCAR1)及蛋白激酶A(protein kinase A,PKA)的蛋白表达,利用酶联免疫吸附(ELISA)试剂盒检测神经元环磷酸腺苷(cyclic adenosine monophosphate,c AMP)水平;采用si RNA技术下调HCAR1表达,通过HE染色观察神经元形态变化,应用MTT方法检测细胞活性,通过western blot方法检测突触可塑性蛋白的表达变化;(5)采用si RNA技术同时下调MCT2及HCAR1表达,通过HE染色观察神经元形态变化,采用试剂盒检测神经元中ATP水平变化,应用MTT方法检测细胞活性;应用western blot方法检测HCAR1、p PKA/PKA及突触可塑性相关蛋白的表达,利用ELISA试剂盒检测神经元c AMP水平。研究结果:(1)给予神经元-星形胶质细胞共培养体系葡萄糖剥夺(GD)处理0.5h、1h、2h、6h能够成功建立低血糖模型,并很好的模拟低血糖对于大脑的动态影响。与单培养神经元相比,与星形胶质细胞共培养的神经元能抵抗低血糖损伤;(2)低血糖可引起神经元形态及数量改变、诱导神经元细胞周期阻滞,且呈动态变化;长期低血糖可诱导细胞凋亡;GD1h开始突触可塑性蛋白表达明显下降;(3)低血糖可引起星形胶质细胞及神经元糖酵解能力由增强至减弱,表现为星形胶质细胞内谷氨酸摄取、糖原分解及两种细胞内糖酵解关键酶的活性及蛋白表达由增强至减弱的动态变化;神经元及星形胶质细胞乳酸转运能力由增强至减弱,表现为MCTs蛋白表达由增强至减弱的动态变化,并进一步引起能量代谢底物如乳酸、丙酮酸的动态变化;GD2h开始神经元ATP的水平明显下降;下调MCT2表达能够抑制神经元-星形胶质细胞乳酸穿梭,影响神经元形态及数目,引起共培养体系培养基中乳酸堆积,神经元内乳酸减少,使低血糖对神经元活性的抑制增强,加速神经元ATP的耗竭;(4)低血糖时乳酸作为信号分子能够激活神经元HCAR1受体,抑制c AMP-PKA通路及其下游CREB-BDNF通路,参与低血糖引起的神经元突触可塑性损伤;HCAR1基因沉默可以改善神经元形态、神经元细胞活性及突触可塑性蛋白表达;(5)低血糖时,下调MCT2表达,伴随HCAR1受体的进一步激活、使其对下游的信号通路抑制增强,与能量耗竭共同作用加速神经元突触可塑性损伤;神经细胞间乳酸穿梭与乳酸受体后通路协同作用影响神经元功能;乳酸作为信号分子主要调控神经元突触可塑性。研究结论:(1)神经元及星形胶质细胞共培养利于神经元抵抗低血糖损伤。低血糖影响神经元形态与功能,包括引起细胞周期阻滞、细胞凋亡及突触可塑性损害;(2)低血糖时乳酸介导的神经元及星形胶质细胞代谢偶联协同HCAR1-c AMP-PKA通路呈动态变化,在低血糖早期参与适应性机制抵抗神经元损伤,随低血糖时间的延长转变为损伤机制加速神经元损伤;(3)低血糖时,抑制神经细胞间代谢偶联能加速低血糖引起的神经元功能损伤;抑制HCAR1受体表达能改善神经元突触可塑性损伤,为治疗低血糖所致的认知功能障碍提供新的靶点。

罗文琪[8](2021)在《基于含硒纳米材料的构建及其治疗脊髓损伤的实验研究》文中进行了进一步梳理研究背景:脊髓损伤(Spinal cord injury,SCI)是暴力因素(坠落,车祸等)直接或间接损伤脊髓组织,导致患者感觉、运动、大小便、性功能障碍等一种严重疾病。SCI不仅严重影响患者的生活质量,也给家庭、社会和医疗保健系统带来沉重的负担。目前临床上常用的治疗方法是手术减压解除脊髓压迫,稳定脊柱生物力学力线。但是,手术减压的治疗效果与损伤程度、患者就诊时间、身体耐受程度等多种因素密切相关。另外,在脊髓损伤的急性期,脊柱外科医师常给予大剂量甲基强的松龙的冲击治疗,但是,众多研究表明大剂量甲基强的松龙冲击疗法的治疗效果并不确切,并且常伴随感染、消化道大出血、肺栓塞等并发症。因此,大剂量甲基强的松龙冲击疗法治疗SCI仍有很大局限性。所以,临床上迫切需要新的治疗SCI方法。SCI治疗效果不理想可能与其复杂的级联动态病理过程有关。这种复杂的病理过程主要包括以下四个方面,第一,外伤导致的脊髓内出血、缺血、缺氧、血栓形成;第二,血-脊髓屏障破坏后,循环系统中的中性粒细胞、淋巴细胞、巨噬细胞等炎症细胞浸润至脊髓,并分泌大量促炎因子如IL-1β,TNF-α等;第三,炎症细胞(中性粒细胞、小胶质细胞、巨噬细胞等)产生大量活性氧(Reactive Oxygen Species,ROS),过量ROS打破了脊髓自身的氧化还原平衡,损伤核酸、蛋白质、脂质等诱导神经元、少突胶质细胞凋亡;第四,凋亡细胞产生的大量细胞碎片募集炎症细胞浸润并分泌促炎因子,加重炎症反应使微环境进一步恶化。目前,脊髓损伤的治疗包含神经再生和神经保护两个方向。神经再生包括移植骨髓间充质干细胞、胚胎干细胞、诱导多能干细胞等或刺激自体有潜能的干细胞再生,但SCI后恶劣的微环境不利于移植的干细胞存活或难以向神经元分化限制了以上疗法的治疗效果及临床应用。神经保护则通过抑制或中止SCI后复杂的级联动态病理过程,改善损伤微环境提高神经元、胶质细胞对损伤因素的耐受程度,促进细胞在恶劣的微环境存活、重塑,进而恢复神经功能。研究目的:随着纳米材料与临床医学的深度融合及相关领域的快速发展,纳米材料在神经保护方面的应用也得到了重视。纳米材料既有良好的生物相容性又能够有效清除ROS、抑制炎症反应,因此,利用纳米材料治疗SCI是当前的研究热点。为此,本文拟合成制备了具有清除ROS功能的硒杂化碳量子点(Selenium-Doped Carbon Quantum Dots,Se-CQDs),旨在探讨Se-CQDs的生物相容性、抗氧化性、抑制炎症性和神经保护性。并在此基础上进一步优化,设计并制备了既能清除ROS同时具有靶向性的透明质酸-硒(Hyaluronic acid-Selenium,HA-Se)纳米粒子。旨在探讨HA-Se纳米粒子在体内外的靶向性及其对SCI的治疗效果。研究方法:(1)通过水浴加热L-硒代胱氨酸的方法制备了Se-CQDs。采用动态光散射(DLS),透射电镜(TEM),马尔文粒度仪对Se-CQDs大小、形态、电位进行表征。采用核磁共振氢谱(1H NMR)和碳谱(13C NMR),傅里叶变换红外线(FTIR),x射线表面光电子能(XPS),紫外吸收光谱,荧光光谱对Se-CQDs结构进行表征,明确合成物质结构及组成成分。同时,通过DPPH检测Se-CQDs清除自由基的效率。体外实验,首先通过MTT法验证了不同浓度Se-CQDs(6.25,12.5,25,50,100,200μg/m L)对细胞(N2a细胞、PC12细胞、星形胶质细胞)生物相容性的影响。同时,用MTT法检验了上述浓度Se-CQDs在250μM H2O2模拟的氧化应激环境对N2a细胞、星形胶质细胞的保护作用。另外,通过Elisa法探究了Se-CQDs对LPS刺激后BV2细胞炎症因子(IL-1β,IL-6,TNF-α)表达的影响。体内实验,采用标准的脊髓打击器制造大鼠脊髓挫伤模型。造模成功后脊髓损伤局部通过微量注射器原位给予盐水或不同浓度的Se-CQDs(250μg/m L,1000μg/m L)各10μL,分组情况如下:saline组,Se-CQDs(250μg/m L)组及Se-CQDs(1000μg/m L)组。于术后24h取材提取脊髓损伤处的全蛋白,进行Western Blot实验,评估Se-CQDs在体内水平对Caspase-9,Cleaved caspase-3,Bcl-2,Bax凋亡相关蛋白表达量的影响。术后5d,心脏灌注取材通过免疫荧光染色(CD68,活化的小胶质细胞)评估Se-CQDs在体内水平抑制炎症的作用。剩余SD大鼠于造模后1d,1w,2w,3w,4w,5w,6w,7w和8w通过BBB评分连续评估下肢运动功能,同时记录大鼠恢复自主排尿的时间。于造模后8周心脏灌注取材,通过膀胱H&E和Masson染色,脊髓外像、脊髓H&E和LFB染色及脊髓免疫荧光染色(CS56&GFAP,Neu N&NF200)等系统评价Se-CQDs对急性SCI及相关膀胱改变的治疗效果。(2)透明质酸(Hyaluronic Acid,HA)在水溶液中作为稳定剂通过氧化还原体系制备HA-Se纳米粒子。采用动态光散射(DLS),马尔文粒度仪,透射电镜(TEM),扫描电镜(SEM)对HA-Se纳米粒子的大小、电位、形貌进行表征,采用傅里叶变换红外线(FTIR),x射线表面光电子能(XPS)对HA-Se纳米粒子的结构进行表征。同时,通过DPPH检测HA-Se纳米粒子清除自由基的效率。体外实验,首先通过MTT法验证了不同浓度HA-Se纳米粒子(3.125,6.25,12.5,25,50,100μg/m L)对PC12细胞和星形胶质细胞生物相容性的影响。同时,用MTT法检验了50和100μg/m L HA-Se纳米粒子在100μM H2O2模拟的氧化应激环境下对星形胶质细胞保护作用。另外,通过Elisa法检测了HA-Se纳米粒子对LPS刺激BV2细胞后炎症因子(IL-1β,IL-6,TNF-α)表达量的影响。体内实验,采用标准的脊髓打击器制造大鼠脊髓挫伤模型。为了探究SCI后CD44表达情况,通过Western Blot法检测脊髓损伤各组间CD44表达量,同时,术后5d取材通过免疫荧光染色共定位法探究了CD44具体为何种细胞表达。进一步,为了评估HA-Se纳米粒子在脊髓的靶向性,采用尾静脉注射NH2-CY5荧光标记的HA-Se纳米粒子进行示踪,并于动物成像系统拍照记录组织分布。为了探究HA-Se纳米粒子对凋亡的影响,术后24h取材,检测假手术组,saline组和HA-Se纳米粒子组促凋亡蛋白Cleaved caspase-3的表达差异。另外,为了评估HA-Se纳米粒子抑制炎症的作用,术后5天心脏灌注后取材通过免疫荧光染色(CD68&Iba-1)评估不同浓度HA-Se纳米粒子(1mg/kg,5mg/kg,10mg/kg)在体内抑制炎症的作用。为了评估HA-Se纳米粒子治疗效果,于损伤后1d,1w,2w,3w,4w,5w,6w,7w,8w,9w,10w,11w和12w通过BBB评分连续评估下肢运动功能,通过脊髓外像、脊髓H&E和LFB染色及脊髓免疫荧光染色(Neu N&NF200)等评价HA-Se纳米粒子对急性SCI的治疗效果。研究结果:(1)制备了溶解性良好,大小均匀,半径为34.5±3.3 nm的Se-CQDs。体外实验结果表明Se-CQDs在200μg/m L浓度下对N2a细胞、PC12细胞、星形胶质细胞无明显毒性作用,并且62.5μg/m L、125μg/m L、250μg/m L、500μg/m L Se-CQDs清除DPPH效率分别为56.4%、72.1%、91%、98%。在250μM H2O2模拟氧化应激环境下,Se-CQDs有效提高了N2a细胞、星形胶质细胞、PC12细胞的存活率,并且能够抑制LPS刺激BV2产生炎症因子IL-1β和IL-6。此外,体内实验表明,相比saline组,Se-CQDs治疗组脊髓挫伤模型中脊髓空洞明显减小、神经脱髓鞘受到抑制、神经元得到保护、膀胱内膜增厚及膀胱纤维化均明显减轻。同时,促凋亡蛋白(Bax、Cleaved Caspase-3、Caspase-9)表达减少,抗凋亡蛋白Bcl-2表达增加且均具有统计学意义,BBB评分及自主排尿恢复时间表明,相比saline组,Se-CQDs治疗组下肢运动功能及膀胱排尿功能得到明显改善。(2)制备了溶解性好,核壳结构,大小均匀,直径为95±2.3 nm的HA-Se纳米粒子。体外实验结果表明HA-Se纳米粒子在100μg/m L浓度下对PC12细胞、星形胶质细胞无明显毒性作用,并且250μg/m L HA-Se纳米粒子在30min、60min、90min、150 min清除DPPH效率分别为0.8%、5.9%、9.7%、14.5%,1000μg/m L HA-Se纳米粒子在30 min、60 min、90 min、150 min清除DPPH效率分别为14.6%、19.5%、25.7%、31.8%。HA-Se纳米粒子有效促进了星形胶质细胞在H2O2模拟氧化应激环境下的存活,并且能够抑制LPS刺激BV2产生炎症因子IL-1β、IL-6、TNF-α。此外,本研究发现SCI后大鼠脊髓损伤局部星形胶质细胞及部分小胶质细胞CD44表达增加,且体外实验证实LPS刺激星形胶质细胞24 h后能够诱导其表达CD44。体内实验证实,HA-Se纳米粒子能够特异性的与CD44结合,相比saline组,HA-Se治疗组的脊髓空洞减小、神经脱髓鞘减轻、炎症细胞浸润受到抑制,促凋亡蛋白Cleaved Caspase-3表达减少,HA-Se治疗组下肢运动功能明显改善。研究结论:(1)Se-CQDs具有良好的生物相容性及高效的ROS清除能力,显着减轻了SCI氧化应激反应和炎症细胞募集浸润,明显改善了SCI后的神经功能,为治疗SCI提供了新的选择。(2)SCI后星形胶质细胞表达CD44增加,HA-Se纳米粒子通过结合星形胶质细胞表面高表达的CD44而具有良好的靶向性作用。同时,HA-Se纳米粒子本身还具备抑制炎症细胞浸润、减小脊髓空洞、保护神经元促进其存活的作用,明显改善了神经功能。这为制备靶向性纳米药物治疗SCI提供了新思路。

刘兴媛[9](2021)在《电针通过长非编码RNA SNHG1调控细胞自噬、糖代谢和铁死亡延缓阿尔茨海默病进展及机制研究》文中研究说明背景和目的:阿尔茨海默病(Alzheimer’s disease,AD)是临床常见神经退行性疾病,目前尚缺乏有效预防和治疗手段。大量事实表明表观遗传调控失常与AD的发生发展息息相关,但截至目前,AD发生的分子机制仍未完全阐明,因此,研究AD的发生发展分子机制对改善AD的临床诊疗具有重大意义。目前临床上采用电针治疗AD,取得了一部分临床效果,但电针作用于AD的治疗机制尚不清楚。研究电针对AD的治疗作用,以及影响AD进展的表观遗传调控因素,是增强电针治疗AD效果以及探索AD新治疗手段的必由之路。为联系传统电针治疗和表观遗传调控之间的关系,必须从更高纬度、更保守的水平上寻求分子机制的突破。方法:首先建立大鼠的AD模型,再将合格大鼠称重后随机分为假手术组、模型组与电针组。进行行为指标检测,在Morris水迷宫实验中,定位导航试验记录分析大鼠逃避潜伏期及轨迹,空间探索实验记录大鼠跨越平台期的次数。其次,建立AD细胞模型,进行SNHG1的检测及表型验证,采用实时荧光定量PCR检测SNHG1的表达水平;表型验证包括采用彗星电泳检测DNA损伤,利用CCK8和Edu增殖水平检测检测细胞增殖速率,利用克隆形成实验检测细胞的克隆形成能力。随后进行糖酵解相关指标的检测,指标包括葡萄糖摄取能力、ATP生成、乳酸生成、细胞外酸化(ECAR)以及耗氧量(OCR)等;最后进行铁死亡相关检测,包括铁、MDA和脂质活性氧(ROS)水平的检测。分析互作方面利用mRNA稳定性检测靶基因mRNA半衰期水平,利用RNA免疫共沉淀(RIP实验)检测RNA和蛋白质互作等。各组数据用SPSS22.0软件进行处理。先行正态性检验。符合正态分布者,行方差齐性检验,方差齐者用q检验,方差不齐者用Tamhane’s T2或Dunnett’s T3法;不符合正态分布者采用多个独立样本比较的秩和检验。结果:水迷宫实验发现,AD组大鼠的平均逃避潜伏期和平均游泳距离明显长于对照组;在空间探索实验中,AD组大鼠在目标象限的游泳时间和距离百分比明显低于对照组。在给予高频刺激(HFS)之前,先进行30min的测试刺激,观察基础f EPSP的波幅。结果表明,各组基础f EPSP始终保持稳定,f EPSP波幅无明显差异(P>0.05);而AD模型组在0min、30min和60min时,f EPSP的波幅与对照组相比明显抑制。在H-SY5Y/Aβ-42神经元模型中,CCK8细胞增殖实验显示AD发生后神经元增殖活性明显降低,EDU活性细胞实验显示AD发生后EDU阳性神经元数量明显减少,集落形成能力也降低,证明AD发生后细胞神经元的增殖活性受到抑制。经过电针治疗后,电针组大鼠的平均逃避潜伏期和平均游泳距离均明显短于AD组,在空间探索实验中,电针组大鼠目标象限游泳时间和距离百分比明显高于AD组,说明电针组大鼠空间记忆能力明显改善和缓解。电针组在给药后0min、30min、60min与AD组相比,f EPSP波幅明显激活。为了探讨lncRNA表达谱在AD进展中的作用,利用H-SY5Y/Aβ-42神经细胞模型比较了AD发生时神经细胞和正常细胞转录产物的差异。结果表明,SNHG1在AD细胞中高表达。随后我们下调了SNHG1的表达,并对敲减前后RNA转录物的KEGG通路进行了分析。结果表明,SNHG1参与细胞的多种生物学过程,包括MAPK途径、药物代谢、糖代谢、氧化应激等。值得注意的是,SNHG1还影响自噬基因的富集。因此,SNHG1对自噬过程的影响是下一步的研究方向。同时,既往研究表明AD发生后正向调节自噬的关键蛋白Beclin1的表达下调。因此,需要研究SNHG1对Beclin1蛋白的影响。使用Starbase生物信息学分析数据库结果表明,RNA结合蛋白IGF2BP2可能同时与SNHG1和Beclin1相互作用,由此推测SNHG1通过IGF2BP2调控下游靶基因Beclin1。随后功能结果表明,AD发生后Beclin1蛋白的表达明显低于对照组,同时SNHG1能抑制Beclin1蛋白和mRNA的表达,此外,敲减SNHG1后,Beclin1 mRNA的稳定性和表达明显增强。双荧光素酶报告基因系统结果表明,SNHG1对Beclin1 mRNA的转录水平没有影响,SNHG1对Beclin1 mRNA的调控主要发生在转录后水平。生物信息学分析表明,RNA结合蛋白IGF2BP2可能同时与SNHG1和Beclin1相互作用。为了验证这一猜想,使用RNA结合蛋白免疫沉淀实验进行了验证。结果表明SNHG1通过与RNA结合蛋白IGF2BP2结合参与Beclin1 mRNA的调控。回复实验结果显示,自噬抑制剂组和SNHG1过表达组大鼠寻找水下平台的平均逃避潜伏期和平均游泳距离均显着高于电针组,说明自噬抑制剂和SNHG1过表达逆转了电针的治疗作用。在空间探索实验中,自噬抑制剂组和SNHG1高表达组大鼠在靶象限游泳的时间和距离百分比均短于电针组,说明自噬抑制剂组和SNHG1高表达组逆转了电针治疗大鼠的空间记忆能力。同时,自噬抑制剂和SNHG1过表达组在HFS刺激后,f EPSP波幅与电针组相比均有明显抑制。q RT-PCR结果显示,AD细胞株SNHG1明显升高。CCK-8检测结果显示,SNHG1敲减可显着增加AD细胞的增殖。此外,SNHG1敲减组EDU阳性细胞百分率明显升高。同时,SNHG1敲减的AD细胞发生了较少的凋亡。彗星电泳实验显示,在AD细胞中,SNHG1敲减组的DNA损伤百分率也低于对照组。敲减SNHG1的AD细胞的葡萄糖摄取、乳酸产生和ATP生成显着减少;细胞外酸化率(ECAR)显着降低,氧耗率(OCR)显着增加。铁死亡是AD发生的重要机制,我们继而探索了SNHG1与铁死亡之间的关系,结果显示,敲减SNHG1可以带来铁死亡相关表型的改变,如MDA水平减少、Iron水平减少、GSH增加等,同时这些效应能够被NRF2敲减所逆转。为了验证SNHG1与NRF2 mRNA的直接相互作用,RIP实验结果表明,与空载体或Ig G相比,AD细胞中的SNHG1 RIP对NRF2 mRNA的表达显着富集。然后确定了SNHG1和NRF2之间的调控关系,发现SNHG1的敲减显着提高了AD细胞中NRF2 mRNA和蛋白的表达。而SNHG1的敲减并没有影响NRF2启动子的荧光素酶活性,表明SNHG1通过转录后方式调节NRF2的表达。为了探讨SNHG1是否影响NRF2 mRNA的降解,用RNA合成抑制剂α-Amanitin处理SNHG1改变的AD细胞,然后测定NRF2 mRNA的衰减情况。结果显示,SNHG1的敲减增加了NRF2 mRNA的半衰期和稳定性。接着进行了Me-RIP分析,发现与Ig G相比,m6A抗体显着富集了NRF2mRNA。另外,还观察到SNHG1的敲减显着增加了AD细胞中NRF2 mRNA的m6A甲基化,提示SNHG1对NRF2 mRNA的m6A修饰有负性调节作用。FTO和ALKBH5是m6A脱甲基转移酶,RIP结果表明,FTO抗体能显着富集SNHG1转录本,同时SNHG1的敲减显着降低了FTO在NRF2 mRNA中的结合,FTO过表达挽救了si-SNHG1诱导的NRF2上调。为进一步证实SNHG1/FTO/NRF2轴在AD中的作用,回复实验结果表明,SNHG1基因被敲减后NRF2蛋白的表达增加,而NRF2的敲减可以部分挽救SNHG1带来的效应。在细胞增殖分析中,NRF2的敲减可以部分挽救敲减SNHG1对AD细胞增殖的上调作用。NRF2的敲减挽救了SNHG1基因敲减引起的葡萄糖摄取和乳酸产生的抑制。ECAR和OCR分析表明,NRF2敲减可以部分恢复SNHG1基因敲减对糖酵解过程的抑制。结论:电针可以调节神经元及突触的lncRNA表达,通过表观遗传途径调控神经元的活性和突触抑制。分子机制方面,SNHG1/IGF2BP2/Beclin1通路通过抑制自噬导致神经元损伤和LTP抑制,同时,SNHG1/FTO/NRF2通路参与了AD细胞铁死亡、有氧糖酵解进程。

朱晓婷[10](2021)在《解毒益智方对阿尔茨海默病双转基因小鼠行为学及大脑皮层内β-淀粉样蛋白沉积及BACE1表达影响的研究》文中进行了进一步梳理选题依据:阿尔茨海默病(AD)致残、致死率高,发病机制复杂,大脑内Aβ异常沉积是AD发生发展的重要病理变化及核心环节,前期研究已证实了解毒益智方具有抑制AD线虫头部Aβ斑块沉积及相关基因表达的作用,随之开展的随机对照临床研究证实解毒益智方应用6个月后MMSE、MoCA、ADL评分变化明显优于口服尼莫地平片的对照组。黄连为解毒益智方中的君药,为该方的主要成分,在本方中发挥“解毒”的重要功效。经查阅国内外文献发现黄连中发挥“解毒”作用的主要物质为黄连多糖(CCP),因此设计体外细胞实验探究解毒益智方中的君药黄连的主要有效成分CCP对Aβ25-35损伤PC12的保护作用,为“毒损”的病机及“解毒”的治法提供理论依据,为后续研究提供研究基础。因前期开展的研究均是以单基因单细胞的生物为研究对象,不能很好地模拟AD的疾病特点,因此选用APP/PS1双转基因小鼠作为研究对象,该小鼠很好的模拟了中枢神经系统Aβ异常沉积的状态,通过对小鼠的行为学研究及分子生物学研究,进一步评价解毒益智方的治疗作用。目的:通过体外细胞实验探讨基于“补肾益髓、活血化痰解毒”法形成的解毒益智方其中君药的有效成分CCP对Aβ25-35损伤PC12的保护作用。通过行为学、分子生物学等研究手段,对APP/PS1小鼠的认知功能、Aβ沉积、BACE1表达的相关蛋白、基因等方面进行检测和分析,探讨解毒益智方对APP/PS1小鼠的作用机制,为中药治疗AD的推广应用提供可靠的研究证据。方法:1.本研究分别从体外实验、动物实验探究解毒益智方的作用机制。体外实验部分采用MTT还原法、Hoechst33258荧光染色等方法对Aβ25-35诱导的PC12细胞损伤模型进行线粒体活性、细胞活力、细胞凋亡的测定,探究CCP对PC12细胞的保护作用。动物实验部分选用APP/PS1双转基因小鼠为研究对象,随机分为5组,分别是模型组(APP/PS1组)、盐酸多奈哌齐组(Donepezil组)、解毒益智方低剂量组(JDYZFL组)、解毒益智方中剂量组(JDYZFM组)、解毒益智方高剂量组(JDYZFH组),每组16只小鼠,另选用16只C57小鼠作为正常对照组(Control组),于每日早晨8:30进行灌胃治疗,各组每日灌胃药物及剂量分别是,正常组和模型组0.5%CMC溶液0.20g·kg-1·d-1;阳性对照组:盐酸多奈哌齐溶液0.30g·kg-1·d-1;解毒益智方高、中、低剂量组药物浓度依次为0.60g·kg-1·d-1,0.3g·kg-1·d-1,0.15g·kg-1·d-1。持续6个月治疗结束。2.以Aβ25-35损伤的PC12细胞为研究对象,通过测定细胞活力、LDH释放率、细胞凋亡率、和线粒体膜电位的水平等评价CCP的神经保护作用。3.通过水迷宫实验,记录解毒益智方对APP/PS1小鼠学习记忆能力的影响。4.通过ELISE及免疫荧光法检测APP/PS1小鼠脑内Aβ水平的变化,观察解毒益智方对APP/PS1小鼠脑内Aβ沉积的影响。5.采用PCR方法检测脑组织SIRT1、NF-κB、BACE1基因量变化,并进一步采用Western blot方法检测大脑皮层内SIRT1、BACE1、NF-κB蛋白的变化,观察解毒益智方对APP/PS1小鼠脑内AMPK/SIRT1-PPARγ-PGC1α-BACE1转运蛋白通路SIRT1、BACE1、NF-κB的影响。结果:1.通过体外研究观察CCP对Aβ25-35诱导的PC12细胞损伤的影响PC12细胞活力测定结果显示:PC12细胞经过浓度为5-50μM的Aβ25–35处理24h后,细胞活力随着Aβ25–35浓度的增加从24%下降至61%。当Aβ25–35在浓度范围为5至50μM时引起PC12细胞中LDH释放增加至对照组的约130-160%。在用不同浓度的CCP(5至200μg/ml)处理PC12细胞24h后,未观察到显着的细胞损失。通过Hoechst33258染色及FCM测定细胞凋亡结果显示:细胞核在荧光显微镜下具有显着的浓缩核和凋亡的细胞形成。与在未处理的PC12细胞中观察到的完整,圆形和相对大的细胞核相比,暴露于50μMAβ25–35 24h的细胞显示出典型的细胞凋亡特征,包括染色质浓缩,核碎裂和凋亡小体的出现。用CCP不同浓度(5,25,50,100,200μg/ml)处理后可有效逆转细胞凋亡,其中100μg/ml效果最明显,FCM分析显示单独暴露于50μMAβ25–35 24h导致58.88±6.12%的凋亡率,这与正常对照组中的7.21±0.82%的值显着不同(P<0.01)。加入100μg/ml的CCP后,细胞凋亡下降至12.51±1.32%。通过JC-1红色荧光与JC-1绿色荧光的比率的变化来检测Aβ诱导的线粒体功能障碍结果显示:当PC12细胞暴露于50μM的Aβ25–35中24h后,与正常对照组相比,显着减弱了JC-1的红色荧光比例,提高了JC-1绿色荧光比例(P<0.01)。用CCP(100μg/ml)预处理Aβ25–35处理的PC12细胞显着抵消了Aβ25–35损伤引起的膜电位损失,JC-1从Aβ25–35处理的PC12细胞中的22.1%变为绿色荧光至84.3%,与正常对照组相近(P>0.05)。通过蛋白质印迹法检测细胞色素C结果显示:经50μMAβ25–35处理PC12细胞24h后细胞色素C在细胞质中的蛋白质表达增加,而预先用CCP(100μg/ml)处理的PC12细胞显着减弱线粒体释放的胞质细胞色素C。2.观察JDYZF对APP/PS1双转基因小鼠学习记忆能力的影响。水迷宫实验结果显示:随着实验天数的后移,各组小鼠潜伏期、路径长度、游泳距离均有所缩短,表明随着训练次数的增加各组小鼠对象限平台的定位记忆能力随之有所提升。与Control组相比,APP/PS1组逃避潜伏期、路径长度、游泳距离均明显延长,差异显着(P<0.01)。首次到达平台的时间明显延长,目标停留次数明显减少,差异显着(P<0.01)。与APP/PS1组相比,Donepezil组、JDYZFL组、JDYZFM组逃避潜伏期、路径长度、游泳距离有所缩短,差异有统计学意义(P<0.05,P<0.01)。首次到达平台的时间缩短,目标停留次数增多,差异有统计学意义(P<0.05,P<0.01)。与Donepezil组相比,JDYZFL组作用与其相当,JDYZFM组略优于Donepezil组,差异有统计学意义(P<0.05)。干预治疗6个月的12月龄小鼠的定位航行实验及空间搜索实验结果优于干预治疗3个月的9月龄小鼠,差异有统计学意义(P<0.05)。3.观察JDYZF对APP/PS1双转基因小鼠脑内Aβ沉积的影响。各组小鼠结果如下:与Control组比较,APP/PS1组大脑皮层内可溶性及不可溶性Aβ1-40、Aβ1-42沉积极数量明显增多,具有极显着统计学意义(P<0.01)。与APP/PS1组相比,JDYZFL组、JDYZFM组及Donepezil组大脑皮层内可溶性及不可溶性Aβ1-40、Aβ1-42沉积数量不同程度降低,具有统计学意义(P<0.05,P<0.01)。与Donepezil组比较,JDYZFM组大脑皮层内可溶性及不可溶性Aβ1-40、Aβ1-42沉积数量有所降低,差异具有统计学意义(P<0.05)。通过免疫荧光法测得小鼠大脑皮层内Aβ表达发现,Control组只产生微量Aβ,而APP/PS1组Aβ表达量明显增高,经过用药干预后,12月龄干预组小鼠可溶性及不可溶性Aβ1-40、Aβ1-42沉积数量较9月龄小鼠明显减少,免疫荧光标记从宏观上可以发现干预组Aβ沉积明显减少,APP/PS1组Aβ沉积明显增多。4.调控BACE1表达的相关因子结果(1)PCR检测结果各组小鼠进行的PCR检测结果显示:与Control组相比,APP/PS1组小鼠大脑皮层内BACE1/GAPDH、NF-κB/GAPDH表达含量明显增高,SIRT1/GAPDH明显降低,差异有显着统计学意义((P<0.01)。与APP/PS1组相比,Donepezil组、JDYZFL组及JDYZFM组小鼠海马体内BACE1/GAPDH、NF-κB/GAPDH表达含量不同程度降低,SIRT1/GAPDH表达含量不同程度增高,差异具有统计学意义(P<0.05,P<0.01)。JDYZFH组在NF-κB/GAPDH表达上无统计学差异。与Donepezil组相比,JDYZFL组及JDYZFM组BACE1/GAPDH、NF-κB/GAPDH表达含量不同程度降低,差异具有统计学意义(P<0.05)。PCR结果证实药物干预组可通过提高SIRT1mRNA的含量降低NF-κBmRNA、BACE1mRNA的表达,从而抑制Aβ的产生而起到神经保护的作用。各治疗组大脑皮层Aβ的表达均有所降低。连续灌胃6个月的各组小鼠与连续灌胃3个月的小鼠相比,除APP/PS1组及Control组,其他各组SIRT1mRNA的表达均有所提高,NF-κBmRNA、BACE1mRNA的表达均有所降低,差异具有统计学意义(P<0.05)。(2)Westorn blot检测结果各组小鼠的Western blot检测结果显示:与Control组相比,APP/PS1组小鼠大脑皮层SIRT1的蛋白表达明显降低,NF-κB、BACE1蛋白表达显着升高(P<0.01)。与APP/PS1相比,Donepezil组、JDYZFL组、JDYZFM组BACE1、NF-κB表达降低,SIRT1蛋白表达增高差异有统计学意义(P<0.05)。与Donepezil比较,JDYZFL组、JDYZFM组NF-κB蛋白表达有所降低,差异有统计学意义(P<0.05)。JDYZFL组SIRT1、BACE1蛋白表达无显着差异,JDYZFM组SIRT1表达有所提高,BACE1蛋白表达量略有降低,差异有统计学意义(P<0.05)。经过为期3个月及6个月的干预后,各治疗组大脑皮层Aβ的表达均有所降低。连续灌胃6个月的各组小鼠与连续灌胃3个月的小鼠相比,除APP/PS1组及Control组,其他各组SIRT1的蛋白表达均有所提高,NF-κB、BACE1蛋白的表达均有所降低,差异具有统计学意义(P<0.05)。结论:1 CCP能够保护Aβ25-35损伤的PC12细胞,其机制可能与提高细胞活力、抑制细胞凋亡、减少LDH释放、阻断膜电位的丧失,并阻止线粒体细胞色素C释放,修复线粒体功能障碍有关。2 JDYZF各剂量组可不同程度提高APP/PS1双转基因小鼠定位航行实验及空间搜索实验的成绩,说明JDYZF可改善小鼠空间学习及记忆能力。3 JDYZF可不同程度降低APP/PS1双转基因小鼠大脑皮层内Aβ的异常沉积。4 JDYZF抑制BACE1的异常表达,其作用机制可能是通过调控大脑内AMPK/SIRT1-PPARγ-PGC1α-BACE1信号通路的相关因子表达实现的。

二、谷氨酸对大鼠胶质细胞细胞周期和凋亡及坏死的影响(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、谷氨酸对大鼠胶质细胞细胞周期和凋亡及坏死的影响(论文提纲范文)

(1)IL-4诱导小胶质细胞向M2表型极化对缺血性卒中的影响及其机制研究(论文提纲范文)

中文摘要
abstract
第1章 绪论
    1.1 缺血性脑卒中的疾病负担与临床治疗现状
    1.2 缺血性脑卒中的损伤机制
        1.2.1 细胞兴奋毒性
        1.2.2 氧化应激和硝化应激损伤
        1.2.3 炎症反应
        1.2.4 细胞凋亡
        1.2.5 细胞自噬
    1.3 小胶质细胞广泛参与神经系统疾病的发生、发展
        1.3.1 阿尔兹海默病
        1.3.2 帕金森病
        1.3.3 癫痫
        1.3.4 脊髓损伤
    1.4 小胶质细胞在缺血性脑卒中的研究现状
        1.4.1 缺血性卒中时小胶质细胞上表达的受体和通道蛋白
        1.4.2 缺血性卒中后与小胶质细胞相关性神经损伤的酶类
        1.4.3 靶向小胶质细胞的疗法在缺血性卒中治疗中的应用
        1.4.4 小胶质细胞活动的在体实时呈像
    1.5 IL-4/STAT6信号通路对小胶质细胞的作用
        1.5.1 JAK/STAT信号通路
        1.5.2 小胶质细胞中的IL-4/STAT6信号通路介导神经功能恢复
第2章 脑梗塞可导致小胶质细胞极化表型和炎症因子的改变
    2.1 前言
    2.2 材料与方法
        2.2.1 实验材料
        2.2.2 实验方法
        2.2.3 统计分析
    2.3 实验结果
        2.3.1 缺血性脑卒中患者血液中小胶质细胞相关炎症因子变化
        2.3.2 缺血性脑卒中大鼠血液中小胶质细胞相关炎症因子变化
        2.3.3 免疫荧光检测缺血半暗带小胶质细胞极化情况
    2.4 小结
第3章 IL-4对急性脑梗塞大鼠的神经保护作用
    3.1 前言
    3.2 材料与方法
        3.2.1 实验材料
        3.2.2 实验方法
        3.2.3 统计分析
    3.3 实验结果
        3.3.1 IL-4对大鼠tMCAO后神经功能缺损的影响
        3.3.2 IL-4对大鼠脑梗死容积的影响
        3.3.3 IL-4对大鼠血液中炎症因子的影响
        3.3.4 IL-4对大鼠缺血半暗带区小胶质细胞极化表型的影响
        3.3.5 IL-4对大鼠缺血半暗带区细胞凋亡的影响
        3.3.6 IL-4对大鼠缺血半暗带区皮层神经元的影响
    3.4 小结
第4章 IL-4诱导小胶质细胞向M2表型极化并发挥神经保护作用的机制
    4.1 前言
    4.2 材料与方法
        4.2.1 实验材料
        4.2.2 实验方法
        4.2.3 统计分析
    4.3 实验结果
        4.3.1 IL-4对小胶质细胞炎症因子分泌的影响
        4.3.2 IL-4促进小胶质细胞向M2表型极化的分子通路
        4.3.3 IL-4对小胶质细胞极化表型的影响
        4.3.4 IL-4对小胶质细胞内吞能力的影响
        4.3.5 IL-4处理的小胶质细胞对OGD处理的神经元凋亡的影响
        4.3.6 IL-4处理的小胶质细胞对OGD处理的神经元线粒体膜电位的影响
        4.3.7 IL-4处理的小胶质细胞对OGD处理的神经元调亡蛋白表达的影响
    4.4 小结
第5章 讨论
第6章 结论
参考文献
作者简介及科研成果
致谢

(2)虫草素对Aβ诱导老年痴呆模型动物的保护作用及机制(论文提纲范文)

摘要
abstract
第1章 引言
    1.1 老年痴呆
    1.2 Aβ及淀粉样前体蛋白的基本介绍
        1.2.1 淀粉样前体蛋白的生理作用及致毒作用
        1.2.2 Aβ来源与分布
    1.3 Aβ与阿尔茨海默病的病理关系
        1.3.1 Aβ对线粒体功能障碍的作用
        1.3.2 Aβ与神经凋亡
        1.3.3 Aβ与神经炎症反应
        1.3.4 Aβ与谷氨酸神经毒性效应
    1.4 虫草素概述
    1.5 本课题的研究意义及主要内容
        1.5.1 研究意义
        1.5.2 研究内容
第2章 虫草素对Aβ联合D-半乳糖诱导老年痴呆动物模型的保护作用及机制
    2.1 前言
    2.2 材料
        2.2.1 仪器
        2.2.2 药品与试剂
        2.2.3 药品制备
        2.2.4 实验动物及其环境
    2.3 方法
        2.3.1 分组、给药、造模
        2.3.2 Y型迷宫测试
        2.3.3 生化检验
        2.3.4 HE染色
        2.3.5 统计分析
    2.4 结果
        2.4.1 虫草素对AD模型大鼠学习记忆能力的影响
        2.4.2 虫草素抑制AD模型大鼠海马区乙酰胆碱酯酶的过度激活
        2.4.3 虫草素对海马神经元损伤的保护作用
    2.5 讨论
第3章 虫草素改善Aβ诱导的LTP损伤
    3.1 引言
    3.2 材料
        3.2.1 实验动物及其环境
        3.2.2 实验仪器
        3.2.3 试验药物与试剂
    3.3 实验方法
        3.3.1 药品的制备
        3.3.2 海马切片制备
        3.3.3 场兴奋性突触后电位(f EPSPs)记录
    3.4 数据处理与分析
    3.5 虫草素通过与腺苷A1 受体作用改善Aβ诱导的海马LTP的损伤
    3.6 讨论
第4章 虫草素对大鼠海马神经元保护作用机制
    4.1 引言
    4.2 材料
        4.2.1 实验动物及其环境
        4.2.2 试验药物与试剂
        4.2.3 实验仪器
    4.3 实验方法
        4.3.1 药品的制备
        4.3.2 脑片制备
        4.3.3 电生理学记录
        4.3.4 给药方式
    4.4 数据处理与分析
    4.5 结果
        4.5.1 虫草素对大鼠海马CA1区锥体神经元sPSC的影响
        4.5.2 虫草素对大鼠海马CA1区锥体神经元sEPSCs和mEPSCs的影响
        4.5.3 虫草素对大鼠海马CA1区锥体神经元sIPSCs和mIPSCs的影响
        4.5.4 腺苷A1受体对虫草素诱导大鼠海马CA1区锥体神经元mEPSC和mIPSC改变的影响
        4.5.5 腺苷A2a受体对虫草素诱导大鼠海马CA1区锥体神经元mEPSC和mIPSC改变的影响
        4.5.6 腺苷A2b受体对虫草素诱导大鼠海马CA1区锥体神经元mEPSC和mIPSC改变的影响
    4.6 讨论
5章 结论与展望
    5.1 结论
    5.2 展望
参考文献
攻读学位期间的研究成果及所获荣誉
致谢

(3)额尔敦-乌日勒的活性成分分析及其对小胶质细胞基因调控作用的研究(论文提纲范文)

摘要
ABSTRACT
缩略词
第一章 绪论
    1.1 额尔敦-乌日勒的简介
        1.1.1 额尔敦-乌日勒历史沿革
        1.1.2 额尔敦-乌日勒研究进展
        1.1.3 额尔敦-乌日勒所含单药化学成分的国内外研究进展
    1.2 脑卒中简介
        1.2.1 脑卒中分类及病因
        1.2.2 缺血性脑卒中的主要病理生理机制
        1.2.3 治疗脑卒中的策略
    1.3 小胶质细胞简介
        1.3.1 小胶质细胞简介
        1.3.2 小胶质细胞的极化
        1.3.3 小胶质细胞极化与信号通路
        1.3.4 小胶质细胞与其它神经细胞的相互作用
        1.3.5 作用于小胶质细胞的药物
    1.4 中草药的研究方法及进展
    1.5 立题依据及主要研究内容
        1.5.1 立题依据
        1.5.2 主要研究内容
        1.5.3 创新性
第二章 额尔敦-乌日勒对大鼠大脑中基因表达调控作用及其活性成分的分析
    2.1 引言
    2.2 实验材料
        2.2.1 实验动物
        2.2.2 主要试剂与耗材
        2.2.3 主要仪器
    2.3 实验方法
        2.3.1 动物饲养
        2.3.2 MCAO模型
        2.3.3 治疗组
        2.3.4 收集样品,提取RNA和 RNA-seq
        2.3.5 序列过滤、比对和组装(Assembly)
        2.3.6 差异表达分析
        2.3.7 EW的提取方法
        2.3.8 建立数据库
        2.3.9 UPLC-QTof-MS分析
    2.4 实验结果
        2.4.1 治疗后MCAO/R模型大鼠的神经功能评估
        2.4.2 Illumina测序和参考基因组比对
        2.4.3 EW处理后差异基因表达
        2.4.4 EW-1 中神经活性成分分析
        2.4.5 EW-2 中神经活性成分分析
        2.4.6 EW-3 中神经活性成分分析
        2.4.7 EW-4 中神经活性成分分析
        2.4.8 EW-5 中神经活性成分分析
    2.5 讨论
    2.6 小结
第三章 额尔敦-乌日勒中活性小分子对小胶质细胞分泌的促炎型细胞因子的转录调控作用
    3.1 引言
    3.2 实验材料
        3.2.1 实验动物
        3.2.2 细胞品系
        3.2.3 主要试剂耗材
        3.2.4 仪器设备
        3.2.5 引物
        3.2.6 主要试剂的配制
    3.3 实验方法
        3.3.1 样品的提取制备
        3.3.2 HPLC半制备分离
        3.3.3 UPLC-QTof-MS分析
        3.3.4 小鼠原代小胶质细胞的分离及培养
        3.3.5 BV2 小胶质细胞培养
        3.3.6 EW对小胶质细胞表达的促炎因子的影响
        3.3.7 实时荧光定量PCR
        3.3.8 统计学分析
    3.4 实验结果
        3.4.1 EW不同溶剂提取物对Cxcl10 表达的下调作用
        3.4.2 EW-5 半制备馏分的UPLC分析及其对促炎因子表达的下调作用
        3.4.3 F4 半制备馏分的UPLC分析及其对促炎因子表达的下调作用
        3.4.4 F4-6 中生物活性化学物质的分析及鉴定
        3.4.5 木香烃内酯对小胶质细胞释放的促炎因子表达的影响
        3.4.6 肉豆蔻醚对小胶质细胞释放的促炎因子表达的影响
        3.4.7 土木香内酯对小胶质细胞中促炎因子表达的影响
        3.4.8 亚麻酸对小胶质细胞中促炎因子表达的影响
    3.5 讨论
    3.6 小结
第四章 额尔敦-乌日勒中活性小分子土木香内酯和去氢二异丁香酚抑制小胶质细胞NF-κB信号通路
    4.1 引言
    4.2 实验材料
        4.2.1 细胞品系
        4.2.2 主要试剂与耗材
        4.2.3 主要仪器
        4.2.4 引物
        4.2.5 抗体
        4.2.6 主要试剂的配置
    4.3 实验方法
        4.3.1 样品的提取制备
        4.3.2 UPLC-QTof-MS法对F4-6 定性分析
        4.3.3 UPLC-QTof-MS法对F4-6中Ala和 Deh进行定量分析
        4.3.4 细胞培养
        4.3.5 细胞毒性测定
        4.3.6 N2a细胞的细胞增值活力和神经突触生长测定
        4.3.7 提取总RNA和 RT-q PCR
        4.3.8 蛋白免疫印迹(Western blot)
        4.3.9 统计学分析
    4.4 实验结果
        4.4.1 EW提取物中活性分子的Ala和 Deh的定性
        4.4.2 F4-6 抑制LPS刺激的BV2 细胞促炎因子的表达
        4.4.3 F4-6 促进BV2 细胞LPS刺激后抗炎基因表达
        4.4.4 F4-6 的神经保护作用
        4.4.5 F4-6对LPS诱导的BV2 细胞中NF-κB信号通路激活的影响
    4.5 讨论
    4.6 小结
第五章 天然产物小分子土木香内酯和去氢二异丁香酚对小胶质细胞基因表达的联合调控作用
    5.1 引言
    5.2 实验材料
        5.2.1 细胞品系
        5.2.2 主要试剂与耗材
        5.2.3 主要仪器
        5.2.4 引物
    5.3 实验方法
        5.3.1 细胞培养
        5.3.2 提取RNA和文库构建
        5.3.3 序列过滤、比对和组装
        5.3.4 差异表达分析
        5.3.5 差异表达基因的GO和 KEGG富集分析
        5.3.6 实时荧光定量PCR
        5.3.7 统计学分析
    5.4 实验结果
        5.4.1 Illumina测序和参考基因组比对
        5.4.2 Ala、Deh和 Mix处理后的差异表达基因
        5.4.3 DEG的GO富集分析
        5.4.4 DEG的 KEGG代谢通路富集分析
        5.4.5 通过RT-qPCR验证DEG数据
    5.5 讨论
    5.6 小结
第六章 总结与展望
参考文献
附录一
致谢
攻读博士期间发表的学术论文

(4)马铃薯制品中三类美拉德反应危害物的形成及其对健康的影响(论文提纲范文)

摘要
Abstract
缩略词说明
第一章 绪论
    1.1 马铃薯制品对人体健康的影响
        1.1.1 马铃薯制品与肥胖
        1.1.2 马铃薯制品与高血压
        1.1.3 马铃薯制品与心脑血管疾病
        1.1.4 马铃薯制品与糖尿病和妊娠期糖尿病
        1.1.5 马铃薯制品与癌症
    1.2 马铃薯制品与美拉德反应危害物
        1.2.1 丙烯酰胺
        1.2.2 晚期糖基化终末产物
        1.2.3 杂环胺
        1.2.4 其它美拉德反应危害物
    1.3 美拉德反应危害物的吸收、代谢及对健康的影响
        1.3.1 丙烯酰胺的吸收、代谢及对健康的影响
        1.3.2 晚期糖基化产物的吸收、代谢及对健康的影响
        1.3.3 β-咔啉类杂环胺的吸收、代谢及对健康的影响
        1.3.4 多种美拉德反应危害物共存情况下对健康的影响
    1.4 立题背景与意义
    1.5 本课题主要研究内容
第二章 马铃薯制品中主要美拉德反应危害物含量调查及生成影响因素分析
    2.1 前言
    2.2 材料与设备
        2.2.1 材料与试剂
        2.2.2 主要设备
    2.3 实验方法
        2.3.1 马铃薯样品的制备
        2.3.2 马铃薯原料中糖类的组成及含量测定
        2.3.3 马铃薯原料中水分含量的测定
        2.3.4 马铃薯原料中总酚、总黄酮和总花青素的测定
        2.3.5 马铃薯原料中酚类化合物的UPLC-TOF-MS分析
        2.3.6 马铃薯原料中氨基酸的组成及含量测定
        2.3.7 马铃薯原料中糖苷生物碱提取及含量测定
        2.3.8 马铃薯制品中丙烯酰胺含量测定
        2.3.9 马铃薯制品中CML和 CEL含量测定
        2.3.10 马铃薯制品中杂环胺含量测定
        2.3.11 美拉德反应危害物检测方法学考察
        2.3.12 主成分分析
        2.3.13 典型相关性分析
        2.3.14 数据分析方法
    2.4 结果与讨论
        2.4.1 商品化马铃薯制品中主要美拉德反应危害物分析
        2.4.2 热加工过程中马铃薯组分与美拉德反应危害物同步生成的关联
    2.5 本章小结
第三章 马铃薯制品对人体健康的影响:基于前瞻性队列研究的Meta分析
    3.1 前言
    3.2 材料与方法
        3.2.1 研究材料
        3.2.2 检索策略
        3.2.3 文献纳入及排除标准
        3.2.4 文献质量评价
        3.2.5 文献数据提取
        3.2.6 统计分析方法
    3.3 结果与讨论
        3.3.1 文献检索结果
        3.3.2 马铃薯制品摄入与全死因死亡率的Meta分析
        3.3.3 马铃薯制品摄入与心脑血管疾病风险的Meta分析
        3.3.4 马铃薯制品摄入与结肠癌风险的Meta分析
        3.3.5 马铃薯制品摄入与糖尿病和妊娠期糖尿病风险的Meta分析
        3.3.6 马铃薯制品摄入与高血压风险的Meta分析
        3.3.7 发表偏倚分析及敏感性分析
        3.3.8 讨论
    3.4 主要结论
第四章 马铃薯制品中丙烯酰胺、β-咔啉类杂环胺和晚期糖基化产物对大鼠健康的影响
    4.1 前言
    4.2 实验材料和主要仪器设备
        4.2.1 实验动物
        4.2.2 实验材料
        4.2.3 主要仪器设备
    4.3 实验方法
        4.3.1 实验动物饲养与给药
        4.3.2 口服糖耐量测试(OGTT)
        4.3.3 实验样本收集
        4.3.4 空腹血清胰岛素含量(FINS)
        4.3.5 胰岛稳态模型评价
        4.3.6 血清生化分析
        4.3.7 氧化应激水平测定
        4.3.8 主要脏器组织病理分析
        4.3.9 血清代谢组学样本前处理
        4.3.10 GC-TOF-MS分析血清代谢物
        4.3.11 血清代谢物鉴定
        4.3.12 血清代谢物数据统计处理
        4.3.13 数据统计方法
    4.4 结果与讨论
        4.4.1 实验动物常规指标监测
        4.4.2 三类美拉德反应危害物对大鼠血糖代谢的影响
        4.4.3 三类美拉德反应危害物对大鼠脏器组织的影响
        4.4.4 三类美拉德反应危害物对大鼠氧化应激水平的影响
        4.4.5 三类美拉德反应危害物对大鼠内源性代谢物的影响
        4.4.6 三类美拉德反应危害物对大鼠代谢通路的影响
        4.4.7 讨论
    4.5 主要结论
第五章 马铃薯制品中丙烯酰胺、β-咔啉类杂环胺和晚期糖基化产物对糖尿病大鼠健康的影响
    5.1 前言
    5.2 实验材料和主要仪器设备
        5.2.1 实验动物
        5.2.2 实验材料
        5.2.3 主要仪器设备
    5.3 实验方法
        5.3.1 实验动物饲养与给药
        5.3.2 口服糖耐量测试(OGTT)
        5.3.3 实验样本收集和血清生化分析
        5.3.4 空腹血清胰岛素含量
        5.3.5 胰岛稳态模型评价
        5.3.6 氧化应激与炎症因子水平测定
        5.3.7 胰岛细胞线粒体膜电位测定
        5.3.8 血液和尿液代谢组学样本前处理
        5.3.9 GC-TOF-MS分析及鉴定血液和尿液代谢物
        5.3.10 代谢组学和其它数据统计处理
    5.4 结果与讨论
        5.4.1 三类美拉德反应危害物对GK大鼠糖尿病进展的影响
        5.4.2 三类美拉德反应危害物影响GK大鼠糖尿病进展的潜在机制
        5.4.3 三类美拉德反应危害物对GK大鼠健康的影响
    5.5 主要结论
第六章 马铃薯制品中丙烯酰胺、β-咔啉类杂环胺和晚期糖基化产物对糖尿病大鼠认知和记忆功能的影响
    6.1 前言
    6.2 实验材料和主要仪器设备
        6.2.1 实验动物
        6.2.2 实验材料
        6.2.3 主要仪器设备
    6.3 实验方法
        6.3.1 实验动物饲养与给药
        6.3.2 新物体识别实验
        6.3.3 Y迷宫实验
        6.3.4 实验样本收集
        6.3.5 氧化应激与炎症因子水平测定
        6.3.6 脑组织中关键蛋白含量的测定
        6.3.7 脑组织病理分析以及H&E染色和尼氏染色
        6.3.8 免疫组织化学染色
        6.3.9 实验数据统计分析
    6.4 结果与讨论
        6.4.1 三类美拉德危害物对GK大鼠认知和记忆功能的影响
        6.4.2 三类美拉德危害物影响GK大鼠认知和记忆功能的机制
    6.5 主要结论
主要结论与展望
    主要结论
    展望
论文创新点
致谢
参考文献
附录A:HPLC-MS图谱
附录B:免疫组化染色图
附录C:作者在攻读博士学位期间的主要成果

(5)基于代谢组学的刺五加叶治疗缺血性脑卒中作用机制研究(论文提纲范文)

中文摘要
abstract
第1章 引言
    1.1 缺血性脑卒中
        1.1.1 缺血性脑卒中概述
        1.1.2 缺血性脑卒中发病机制及主要病理环节
        1.1.3 缺血性脑卒中与肠道菌群的关系
        1.1.4 缺血性脑卒中常用药物
    1.2 刺五加叶主要化学成分及药理作用
        1.2.1 刺五加叶概述
        1.2.2 刺五加叶主要化学成分
        1.2.3 刺五加叶主要药理作用
    1.3 代谢组学
        1.3.1 代谢组学概述
        1.3.2 代谢组学研究方法
        1.3.3 脂质组学研究方法
        1.3.4 代谢组学在缺血性脑卒中研究中的应用
        1.3.5 基于高效同位素标记衍生化的代谢组学研究
    1.4 本论文的研究思路、研究目的及意义
        1.4.1 研究思路
        1.4.2 研究目的及意义
第2章 刺五加叶治疗缺血性脑卒中的血清脂质组学及其神经保护作用研究
    2.1 实验部分
        2.1.1 药品、试剂及仪器
        2.1.2 刺五加叶主要活性组分的制备及成分分析
        2.1.3 缺血性脑卒中大鼠模型建立
        2.1.4 样品采集及处理
        2.1.5 组织病理学检查
        2.1.6 血清脂质代谢轮廓采集
        2.1.7 数据分析
        2.1.8 基于UPLC-TQ/MS的神经递质定量分析
        2.1.9 基于UPLC-TQ/MS的神经递质定量分析方法学考察
    2.2 结果与讨论
        2.2.1 刺五加叶主要活性组分成分分析
        2.2.2 组织病理学检查
        2.2.3 血清脂质组学代谢轮廓分析
        2.2.4 血清脂质组学潜在的生物标记物鉴定
        2.2.5 血清脂质组学通路分析
        2.2.6 神经递质定量研究
        2.2.7 炎症因子和氧化应激水平研究
    2.3 小结
第3 章 刺五加叶治疗缺血性脑卒中粪便代谢组学研究及其对微生物-肠-脑轴的影响
    3.1 实验部分
        3.1.1 药品、试剂及仪器
        3.1.2 缺血性脑卒中大鼠模型建立
        3.1.3 样品采集及处理
        3.1.4 粪便代谢轮廓采集
        3.1.5 数据分析
        3.1.6 基于UPLC-TQ/MS的大鼠粪便胆汁酸定量分析
        3.1.7 粪便菌群的16S r RNA测序
    3.2 结果与讨论
        3.2.1 粪便非靶向代谢组学代谢轮廓分析
        3.2.2 粪便非靶向代谢组学潜在的生物标记物鉴定
        3.2.3 粪便非靶向代谢组学通路分析
        3.2.4 基于靶向代谢组学的大鼠粪便胆汁酸的定量研究
        3.2.5 刺五加叶对大鼠粪便菌群组成的影响
    3.3 小结
第4章 刺五加叶通过对益生菌的调节作用治疗缺血性脑卒中的机制验证
    4.1 实验部分
        4.1.1 药品、试剂及仪器
        4.1.2 菌群培养及菌液制备
        4.1.3 缺血性脑卒中大鼠模型建立
        4.1.4 样品采集及处理
        4.1.5 粪便菌群的16S r RNA测序
        4.1.6 大鼠脑组织中神经递质的含量测定
        4.1.7 炎症因子及氧化应激等生化指标检测
    4.2 结果与讨论
        4.2.1 益生菌对缺血性脑卒中大鼠粪便菌群组成的影响
        4.2.2 益生菌对缺血性脑卒中大鼠脑组织中神经递质水平的影响
        4.2.3 益生菌对缺血性脑卒中大鼠脑组织及血清炎症因子和氧化应激水平的影响
    4.3 小结
第5章 刺五加叶治疗缺血性脑卒中的尿液代谢组学研究
    5.1 实验部分
        5.1.1 药品、试剂及仪器
        5.1.2 缺血性脑卒中大鼠模型建立
        5.1.3 样品采集及处理
        5.1.4 尿液代谢轮廓采集
        5.1.5 数据分析
        5.1.6 ELISA法对通路分析进行验证
    5.2 结果与讨论
        5.2.1 尿液非靶向代谢组学代谢轮廓分析
        5.2.2 尿液非靶向代谢组学潜在的生物标记物鉴定
        5.2.3 尿液非靶向代谢组学通路分析
        5.2.4 刺五加叶治疗缺血性脑卒中对体内代谢通路的影响验证
    5.3 小结
第6章 基于高效同位素标记衍生化的刺五加叶治疗缺血性脑卒中尿液代谢组学研究
    6.1 实验部分
        6.1.1 药品、试剂及仪器
        6.1.2 缺血性脑卒中大鼠模型建立
        6.1.3 样品采集及处理
        6.1.4 尿液样本同位素标记衍生化
        6.1.5 尿液代谢轮廓采集
        6.1.6 数据分析
    6.2 结果与讨论
        6.2.1 尿液高效同位素标记衍生化代谢组学代谢轮廓分析
        6.2.2 尿液高效同位素标记衍生化代谢组学潜在的生物标记物鉴定
        6.2.3 尿液高效同位素标记衍生化代谢组学结果的科学解释
    6.3 小结
第7章 结论
本论文创新点
参考文献
作者简介及在学期间所取得的科研成果
致谢

(6)丹参多酚酸通过小胶质细胞P2X7/NLRP3/GSDMD通路减轻实验性脑缺血再灌注损伤研究(论文提纲范文)

摘要
abstract
英文缩略词表
前言
论文一 注射用丹参多酚酸盐(SAFI)对MCAO/R模型大鼠神经保护作用
    材料与方法
    实验结果
    讨论
    小结
论文二 SAFI对经OGD/R处理的神经元细胞活力与凋亡影响的研究
    材料与方法
    实验结果
    讨论
    小结
论文三 SAFI对MCAO/R模型及OGD/R模型小胶质细胞NLRP3炎症小体激活与GSDMD影响的研究
    材料与方法
    实验结果
    讨论
    小结
论文四 SAFI对MCAO/R模型及OGD/R模型NLRP3炎症小体激活上游的膜通道P2X7表达的影响及SAFI组分与P2X7的分子对接
    材料与方法
    实验结果
    讨论
    小结
结论
本研究创新性的自我评价
参考文献
附图
综述一 脑梗死后的免疫反应
    参考文献
综述二 注射用丹参多酚酸盐治疗脑梗死的研究进展
    参考文献
个人简介
在学期间科研成绩
致谢

(7)乳酸介导的神经元-星形胶质细胞代谢偶联及HCAR1-cAMP-PKA通路在低血糖引起神经元功能异常中的作用(论文提纲范文)

中文摘要
abstract
第1章 绪论
    1.1 研究背景及意义
    1.2 本课题的假设与提出
第2章 文献综述
    2.1 低血糖概况
        2.1.1 低血糖定义
        2.1.2 低血糖病因及流行病学
        2.1.3 低血糖时机体的防御机制
        2.1.4 低血糖引发的不良影响
        2.1.5 低血糖的诊治及预防
    2.2 低血糖对神经元及认知功能的影响
        2.2.1 低血糖对大脑功能损伤概况
        2.2.2 低血糖对神经元及认知功能影响的研究进展
    2.3 低血糖引起神经元及认知功能异常的发病机制
        2.3.1 低血糖对大脑能量代谢的影响
        2.3.2 氨基酸毒性在低血糖引起神经元损害中的作用
        2.3.3 Zn~(2+)释放在低血糖引起神经元损害中的作用
        2.3.4 氧化应激在低血糖引起神经元损害中的作用
        2.3.5 炎症反应在低血糖引起神经元损害中的作用
    2.4 乳酸介导的神经元-星形胶质细胞代谢偶联对神经元功能的影响
        2.4.1 乳酸穿梭对神经元功能的影响
        2.4.2 乳酸通过介导乳酸受体后信号通路对神经元功能的影响
    2.5 乳酸在低血糖时对神经元及认知功能的影响及研究现状
第3章 神经元-星形胶质细胞共培养体系的构建及中枢低血糖模型的制备
    3.1 前言
    3.2 实验试剂及器材
        3.2.1 实验试剂
        3.2.2 实验器材
        3.2.3 主要试剂溶液制备
    3.3 实验方法
        3.3.1 细胞培养
        3.3.2 构建神经元-星形胶质细胞共培养体系
        3.3.3 神经元-星形胶质细胞共培养体系低血糖模型的建立
        3.3.4 MTT法检测细胞活性
        3.3.5 统计分析
    3.4 实验结果
    3.5 讨论
    3.6 小结
第4章 低血糖对神经元形态及功能的影响
    4.1 前言
    4.2 实验试剂及器材
        4.2.1 实验试剂
        4.2.2 实验器材
        4.2.3 主要试剂溶液制备
    4.3 实验方法
        4.3.1 苏木素-伊红(HE)染色
        4.3.2 尼氏染色
        4.3.3 Hoechst33342/PI免疫荧光检测神经元凋亡
        4.3.4 流式细胞术检测细胞凋亡
        4.3.5 流式细胞术检测细胞周期
        4.3.6 Western blot方法检测神经元突触可塑性蛋白
        4.3.7 统计分析
    4.4 实验结果
        4.4.1 低血糖引起神经元形态及数量改变
        4.4.2 长期低血糖可引起神经元细胞凋亡
        4.4.3 低血糖引起神经元细胞周期阻滞
        4.4.4 低血糖可以引起神经元突触可塑性蛋白表达下降
    4.5 讨论
    4.6 小结
第5章 乳酸介导的神经元-星形胶质细胞代谢偶联在低血糖引起神经元功能异常中的作用
    5.1 前言
    5.2 实验试剂与器材
        5.2.1 实验试剂
        5.2.2 实验器材
    5.3 实验方法
        5.3.1 糖原浓度测定
        5.3.2 星形胶质细胞糖原磷酸化酶a(GPa)活性检测
        5.3.3 神经元、星形胶质细胞及培养基乳酸含量测定
        5.3.4 神经元、星形胶质细胞及培养基丙酮酸含量测定
        5.3.5 星形胶质细胞、培养基谷氨酸含量测定
        5.3.6 神经元及星形胶质细胞己糖激酶(HK)活性测定
        5.3.7 神经元及星形胶质细胞丙酮酸激酶(PK)活性测定
        5.3.8 神经元ATP检测
        5.3.9 星形胶质细胞MCT1、MCT4、HK、PKM2、LDH5 及神经元MCT2、HK、PKM2、LDH1 蛋白表达测定
        5.3.10 总RNA提取
        5.3.11 RT-PCR
        5.3.12 实时荧光定量PCR(qPCR)
        5.3.13 基因沉默(siRNA细胞转染)
        5.3.14 统计分析
    5.4 实验结果
        5.4.1 低血糖引起星形胶质细胞对谷氨酸的摄取及自身糖酵解呈现由增强至减弱的动态变化
        5.4.2 低血糖引起神经元-星形胶质细胞乳酸穿梭动态变化与能量底物变化
        5.4.3 低血糖引起神经元内糖酵解呈现由增强至减弱的动态变化
        5.4.4 低血糖引起神经元内ATP水平的变化
        5.4.5 MCT2 基因沉默效果及其对神经元形态及数目的影响
        5.4.6 MCT2基因沉默后建立共培养体系低血糖模型时MCT2的蛋白表达
        5.4.7 低血糖时,MCT2基因沉默对乳酸水平的影响
        5.4.8 低血糖时,MCT2基因沉默对神经元细胞活性及ATP水平的影响
    5.5 讨论
    5.6 小结
第6章 乳酸作为信号分子介导的HCAR1-CAMP-PKA通路在低血糖引起神经元功能异常中的作用
    6.1 前言
    6.2 实验试剂与器材
        6.2.1 实验试剂
        6.2.2 实验器材
        6.2.3 主要实验试剂配制
    6.3 实验方法
        6.3.1 总RNA提取
        6.3.2 RT-PCR
        6.3.3 实时荧光定量PCR(qPCR)
        6.3.4 神经元cAMP测定
        6.3.5 基因沉默(siRNA细胞转染)
        6.3.6 HE染色
        6.3.7 HCAR1、pPKA/PKA、突触可塑性相关蛋白表达测定
        6.3.8 统计分析
    6.4 实验结果
        6.4.1 低血糖引起神经元细胞膜表面乳酸受体HCAR1的mRNA表达及蛋白表达升高
        6.4.2 低血糖可以引起乳酸受体下游的cAMP-PKA通路抑制
        6.4.3 应用siRNA技术下调神经元HCAR1受体表达,在低血糖引起神经元及突触功能损伤中的改善作用
    6.5 讨论
    6.6 小结
第7章 神经元-星形胶质细胞乳酸穿梭及乳酸受体后通路在低血糖引起神经元功能异常中的相互作用
    7.1 前言
    7.2 实验试剂与器材
        7.2.1 实验试剂
        7.2.2 实验器材
    7.3 实验方法
        7.3.1 基因沉默(siRNA细胞转染)
        7.3.2 总RNA提取
        7.3.3 RT-PCR
        7.3.4 实时荧光定量PCR(qPCR)
        7.3.5 HE染色
        7.3.6 神经元及培养基乳酸含量测定
        7.3.7 神经元ATP含量测定
        7.3.8 神经元cAMP测定
        7.3.9 神经元MCT2、HCAR1、pPKA/PKA、pCREB/CREB、BDNF、PSD95、Synapsin-1 蛋白表达测定
        7.3.10 统计分析
    7.4 实验结果
        7.4.1 低血糖引起星形胶质细胞对谷氨酸的摄取及自身糖酵解呈现由增强至减弱的动态变化
        7.4.2 低血糖时,同时下调MCT2及HCAR1表达对神经元形态、活性、ATP水平及突触可塑性的影响
    7.5 讨论
    7.6 小结
第8章 结论
参考文献
作者简介及在学期间所取得的科研成果
致谢

(8)基于含硒纳米材料的构建及其治疗脊髓损伤的实验研究(论文提纲范文)

中文摘要
abstract
中英文缩略词对照表
第一章 前言
第二章 SCI治疗的研究进展
    2.1 前言
    2.2 SCI的病理生理特征
    2.3 SCI的治疗策略
        2.3.1 药物治疗
        2.3.2 手术治疗
        2.3.3 生物材料治疗
        2.3.4 电刺激治疗
        2.3.5 细胞移植治疗
    2.4 小结
第三章 硒-碳量子点(Se-CQDs)构建及其治疗SCI的实验研究
    3.1 引言
    3.2 材料与方法
        3.2.1 实验材料
        3.2.2 主要仪器设备
    3.3 实验细胞和动物
        3.3.1 实验细胞及细胞培养
        3.3.2 实验动物
    3.4 实验方法
        3.4.1 Se-CQDs的制备
        3.4.2 Se-CQDs表征
        3.4.3 Se-CQDs清除氧自由基
        3.4.4 Se-CQDs的生物相容性
        3.4.5 体外H_2O_2诱导的细胞毒性及其对氧化应激的保护作用..
        3.4.6 Se-CQDs抑制炎症的体外实验
        3.4.7 SCI挫伤动物模型制备
        3.4.8 行为学分析
        3.4.9 SCI H&E、LFB和免疫荧光染色的脊髓组织获取
        3.4.10 H&E染色实验方法
        3.4.11 Luxol fast blue(LFB)染色实验方法
        3.4.12 脊髓髓鞘微观结构
        3.4.13 脊髓组织免疫荧光染色
        3.4.14 Se-CQDs对体内继发性损伤的抗凋亡作用
        3.4.15 统计分析
    3.5 结果
        3.5.1 Se-CQDs制备与表征
        3.5.2 Se-CQDs的生物相容性
        3.5.3 Se-CQDs在H_2O_2模拟的氧化应激环境下对细胞的保护作用
        3.5.4 Se-CQDs对LPS诱导BV2细胞表达促炎因子的影响
        3.5.5 Se-CQDs对SCI大鼠模型的治疗作用
        3.5.6 不同治疗组对脊髓组织形态学的影响
        3.5.7 不同治疗组脊髓组织神经元及轴突的保护性作用
        3.5.8 Se-CQDs在体内的抗炎作用及减少胶质瘢痕能力。
        3.5.9 Se-CQDs在体内的抗细胞凋亡能力。
    3.6 讨论
        3.6.1 生物材料通过清除ROS治疗SCI
        3.6.2 清除ROS有助于促进SCI功能恢复
    3.7 本章小结
第四章 透明质酸-硒(Hyaluronic Acid-Selenium,HA-Se)纳米粒子构建及其治疗SCI的实验研究
    4.1 引言
    4.2 材料与方法
        4.2.1 实验材料
        4.2.2 主要仪器设备
    4.3 实验细胞和动物
        4.3.1 实验细胞及细胞培养
        4.3.2 实验动物
    4.4 实验方法
        4.4.1 HA-Se纳米粒子的制备
        4.4.2 HA-Se纳米粒子表征
        4.4.3 HA-Se纳米粒子清除氧自由基
        4.4.4 HA-Se纳米粒子的生物相容性
        4.4.5 体外H_2O_2诱导的细胞毒性及其对氧化应激的保护作用..
        4.4.6 HA-Se纳米粒子抑制炎症的体外实验
        4.4.7 创伤性SCI挫伤动物模型制备
        4.4.8 行为学分析
        4.4.9 SCI后H&E、LFB和免疫荧光染色的脊髓组织获取
        4.4.10 H&E染色实验方法
        4.4.11 Luxol fast blue(LFB)染色实验方法
        4.4.12 脊髓髓鞘微观结构
        4.4.13 脊髓组织免疫荧光染色
        4.4.14 HA-Se纳米粒子对体内继发性损伤的抗凋亡作用
        4.4.15 统计分析
    4.5 结果
        4.5.1 HA-Se纳米粒子制备与表征
        4.5.2 HA-Se纳米粒子的生物相容性
        4.5.3 HA-Se纳米粒子在H_2O_2模拟的氧化应激环境下对细胞的保护
        4.5.4 HA-Se纳米粒子抑制炎症的作用
        4.5.6 SCI后CD44 表达
        4.5.7 星形胶质细胞对HA-Se纳米粒子的内吞
        4.5.8 HA-Se纳米粒子体内分布
        4.5.9 HA-Se纳米粒子疗效分析
        4.5.10 HA-Se纳米粒子体内抑制炎症的作用
        4.5.11 HA-Se纳米粒子体内抗凋亡的作用
        4.5.12 HA-Se纳米粒子体内安全性评价
    4.6 讨论
        4.6.1 靶向性纳米粒子治疗脊髓损伤
        4.6.2 纳米粒子减轻继发性SCI促进神经功能恢复
    4.7 小结
第五章 结论和展望
参考文献
作者简介及在读期间所取得的科研成果
致谢

(9)电针通过长非编码RNA SNHG1调控细胞自噬、糖代谢和铁死亡延缓阿尔茨海默病进展及机制研究(论文提纲范文)

摘要
abstract
中英文缩略词表
第一章 电针通过SNHG1/IGF2BP2/Beclin1 轴改善AD大鼠的认知功能和LTP抑制
    1 前言
    2 材料与方法
        2.1 材料
        2.2 动物分组、动物模型的建立及处理
        2.3 AD细胞模型的建立
        2.4 SNHG1 的检测
        2.5 细胞转染
        2.6 细胞增殖和凋亡检测
        2.7 DNA损伤和修复检测
        2.8 Edu增殖水平的检测
        2.9 蛋白检测
        2.10 mRNA稳定性检测
        2.11 统计学分析
    3 结果
        3.1 AD动物及细胞模型的建立及鉴定
        3.2 电针改善AD大鼠认知功能及LTP抑制作用
        3.3 生物信息学分析表明SNHG1可能通过自噬途径参与AD进展的调控
        3.4 SNHG1/IGF2BP2/Beclin1 抑制AD状态神经元的生物活性
        3.5 SNHG1 促进AD神经元凋亡和DNA损伤
        3.6 回复实验证实电针治疗AD是通过诱导自噬和抑制SNHG1来实现的
    4 讨论
    5 结论
第二章 SNHG1 通过FTO/NRF2 轴促进铁死亡和有氧糖酵解导致AD进展
    1 前言
    2 材料与方法
        2.1 材料
        2.2 AD细胞模型的建立
        2.3 SNHG1 的检测
        2.4 细胞的转染
        2.5 细胞增殖和凋亡检测
        2.6 DNA损伤和修复检测
        2.7 Edu增殖水平的检测
        2.8 铁死亡相关检测
        2.9 蛋白检测
        2.10 mRNA稳定性检测
        2.11 Me-RIP检测NRF2 mRNA的 m6A修饰以及SNHG1 对其的影响
        2.12 RIP实验检测FTO和 SNHG1/NRF2 mRNA存在互作
        2.13 统计学分析
    3 结果
        3.1 SNHG1在AD细胞中表达上调,促进细胞死亡和功能损伤
        3.2 SNHG1 基因敲减可抑制AD细胞的有氧糖酵解
        3.3 SNHG1 通过NRF2 途径促进了AD的铁死亡
        3.4 SNHG1与NRF2 mRNA结合促进其稳定性
        3.5 SNHG1 通过与RNA脱甲基转移酶FTO结合下调NRF2 的表达
        3.6 SNHG1/FTO/NRF2 轴促进AD增殖和功能损伤
    4 讨论
    5 结论
第三章 全文总结
    1 结论
    2 创新点
    3 展望
致谢
参考文献
攻读学位期间的研究成果
综述 非编码RNA和外泌体在神经退行性疾病中的研究进展
    参考文献

(10)解毒益智方对阿尔茨海默病双转基因小鼠行为学及大脑皮层内β-淀粉样蛋白沉积及BACE1表达影响的研究(论文提纲范文)

摘要
ABSTRACT
英文缩略语
引言
文献综述
    综述一 AD的病因病机及治疗进展
        1 中医学对痴呆的系统认识及研究进展
        1.1 中医学对痴呆病名由来及发展的认识
        1.2 中医学对痴呆病因病机的古代认识
        1.3 中医学对痴呆辨证论治及相关研究的认识
        1.4 中医学对痴呆治疗的古今认识
    综述二 西医学对AD的发病机制及治疗进展研究
        1 现代医学对AD的认识及研究进展
        1.1 AD的概述及流行病学
        1.2 现代医学对AD发病因素的认识及研究
        1.3 现代医学对AD发病相关机制的认识
        2 现代医学对AD治疗的认识
        2.1 乙酰胆碱酯酶抑制剂(AchEIs)
        2.2 兴奋性氨基酸受体拮抗剂
        2.3 甘露特纳胶囊
        2.4 其他非药物治疗
        3 问题与展望
    综述三 Aβ在脑内异常沉积的机制
        1.Aβ的产生、分布与清除、传递与运输的研究进展
        1.1 Aβ的产生
        2 Aβ的清除
        2.1 细胞的清除作用
        2.2 Aβ被降解酶的清除作用
        2.3 中枢Aβ的清除途径
        2.4 血液成分介导的Aβ清除
    综述四 解毒益智方在阿尔茨海默病中的应用
        1 解毒益智方的创立
        1.1 脑髓理论
        1.2 髓虚毒损
        1.3 补肾益髓,活血化痰解毒法
        2 解毒益智方通过调节SIRT1/AMPK通路抑制BACE1表达改善Aβ的沉积
        3 解毒益智方对阿尔茨海默病的临床应用
实验研究
    第一章 CCP对Aβ25-35诱导的PC12细胞损伤保护性的研究
        1 实验材料
        2 实验方法
        3 实验结果
        4 讨论
        5 小结
    第二章 JDYZF对APP/PS1双转基因小鼠行为学的研究
        1 实验材料
        2 实验方法
        3 实验结果
        4 讨论
        5 小结
    第三章 JDYZF对APP/PS1双转基因小鼠脑内Aβ水平变化的影响
        1 实验材料
        2 实验方法
        3 结果
        4 讨论
        5 小结
    第四章 JDYZF对APP/PS1双转基因小鼠脑内BACE1表达的影响
        1 实验材料
        2 实验方法
        3 结果
        4 讨论
        5 小结
结论
本文创新点
参考文献
附录1
致谢
在学期间主要研究成果
个人简介

四、谷氨酸对大鼠胶质细胞细胞周期和凋亡及坏死的影响(论文参考文献)

  • [1]IL-4诱导小胶质细胞向M2表型极化对缺血性卒中的影响及其机制研究[D]. 侯坤. 吉林大学, 2021(01)
  • [2]虫草素对Aβ诱导老年痴呆模型动物的保护作用及机制[D]. 王金秀. 江西科技师范大学, 2021(12)
  • [3]额尔敦-乌日勒的活性成分分析及其对小胶质细胞基因调控作用的研究[D]. 其布日. 内蒙古大学, 2021(11)
  • [4]马铃薯制品中三类美拉德反应危害物的形成及其对健康的影响[D]. 全威. 江南大学, 2021(01)
  • [5]基于代谢组学的刺五加叶治疗缺血性脑卒中作用机制研究[D]. 汪戎锦. 吉林大学, 2021(01)
  • [6]丹参多酚酸通过小胶质细胞P2X7/NLRP3/GSDMD通路减轻实验性脑缺血再灌注损伤研究[D]. 马岱朝. 辽宁中医药大学, 2021(02)
  • [7]乳酸介导的神经元-星形胶质细胞代谢偶联及HCAR1-cAMP-PKA通路在低血糖引起神经元功能异常中的作用[D]. 赫广玉. 吉林大学, 2021(01)
  • [8]基于含硒纳米材料的构建及其治疗脊髓损伤的实验研究[D]. 罗文琪. 吉林大学, 2021(01)
  • [9]电针通过长非编码RNA SNHG1调控细胞自噬、糖代谢和铁死亡延缓阿尔茨海默病进展及机制研究[D]. 刘兴媛. 南昌大学, 2021(01)
  • [10]解毒益智方对阿尔茨海默病双转基因小鼠行为学及大脑皮层内β-淀粉样蛋白沉积及BACE1表达影响的研究[D]. 朱晓婷. 长春中医药大学, 2021(01)

标签:;  ;  ;  ;  ;  

谷氨酸对大鼠胶质细胞细胞周期、凋亡和坏死的影响
下载Doc文档

猜你喜欢